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1. Introduction 

1.1. The context 

We inhabit a hyperconnected world, where an increasing number of individuals have access 

to the Web, enabling us to share and access information, opinions, and content of various 

kinds. As early as 2017, half of the global population was online1, and by 2020 – a year 

marked by the COVID-19 pandemic that propelled the world online – every minute saw 

52,083 users connecting on Microsoft Teams, while Netflix provided 404,444 hours of video 

streaming to its users. 

 

Figure 1: A minute on the internet, Statista.com 

Our lives are increasingly intertwined with digital systems that facilitate various aspects of 

our daily routines and among these, recommender systems have emerged as indispensable 

tools, aiding us in navigating the vast expanses of information and choices available online.  

                                                
1 https://www.statista.com/chart/17518/data-created-in-an-internet-minute/ 
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A recommender system, at its core, is an intelligent information filtering mechanism that 

predicts user preferences and provides personalized suggestions, thereby assisting users in 

making informed decisions. This technology has found widespread application in e-

commerce platforms, content streaming services, and social media platforms, shaping our 

online experiences in profound ways.  

Concurrently, the proliferation of conversational agents, commonly known as chatbots, has 

revolutionized the dynamics of human-computer interaction. Chatbots leverage natural 

language processing (NLP) techniques to engage in dialogue with users, offering assistance, 

answering queries, and executing tasks autonomously. 

Telegram2, a popular instant messaging platform, has emerged as a fertile ground for the 

integration of such chatbots, presenting a great tool for users to interact with automated 

systems.  

Amidst the rapid evolution of both recommender systems and chatbots, the fusion of these 

technologies offers an compelling avenue for investigation and despite notable progress in 

both domains, a crucial aspect yet to be comprehensively explored is the persuasiveness of 

this kind of tools. 

 

1.2. The aim 

With a focus on promoting healthy dietary choices, the aim of this thesis is to explore the 

persuasiveness of a healthy food recommender system  integrated into a chatbot.  

In an environment saturated with dietary choices, the recommender system within the chatbot 

interface is tasked with not only suggesting nutritious recipes but also justifying these 

suggestions in a compelling manner.  Recognizing the limitations inherent in promoting 

universally appealing yet not-so-healthy dishes, e.g. carbonara, the system is designed to 

prompt users with balanced recommendations, based on the user characteristics, while 

providing persuasive rationales behind each suggestion.  

                                                
2 https://telegram.org/ 
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Through this approach, the thesis seeks to investigate the effectiveness of the chatbot in 

influencing user behaviour towards embracing healthier eating habits.  

1.3. Thesis structure 

The structure of this thesis follows a logical progression aimed at exploring the 

persuasiveness of the healthy food recommender system integrated into a Telegram chatbot. 

Beginning with the Introduction, the context of the research is established.  

This sets the stage for delineating the aim of the thesis, which is to investigate the 

persuasiveness of the chatbot-recommender system in influencing user behaviour towards 

healthier eating habits.  

Following this, the Fundamental Concepts section provides a grounding in essential 

terminology, including recommender systems, conversational agents, and chatbots, laying the 

foundation for understanding the subsequent discussions.  

The State of the Art chapter surveys existing literature and advancements in the field, 

providing a comprehensive overview of relevant research and technological developments.  

Moving into the core of the thesis, the @food_recsys_bot section delves into the specifics of 

the integrated system, exploring the architecture, technologies utilized, and the rationale 

behind design choices.  

The subsequent Case Study chapter outlines the experimental methodology employed to 

evaluate the persuasiveness of the chatbot's recommendations, detailing the experiment setup 

and the metrics utilized for assessment.  

The Results chapter presents the findings of the study, analyzing data collected from the 

experiment and drawing insights into the effectiveness of the chatbot in changing the user 

perspective towards healthy and sustainable recipes.  

Finally, the Conclusions section summarizes key findings, discusses implications for future 

research, and suggests potential avenues for further exploration.  
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2. Fundamental concepts 

2.1. The Artificial Intelligence 

Artificial Intelligence (AI) represents a transformative field of study and innovation that 

seeks to emulate or replicate human-like intelligence in machines and systems. The 

overarching goals of AI are vast and multifaceted, including the reproduction of human 

cognitive functions such as learning, reasoning, perception, and decision-making.  

AI systems are designed to perform tasks that traditionally require human intelligence, 

ranging from basic pattern recognition to complex problem-solving and decision-making 

processes. 

One of the fundamental techniques employed in AI is machine learning, which enables 

systems to learn from data and improve their performance over time without explicit 

programming.  

Deep learning, a subset of machine learning, involves the use of artificial neural networks 

inspired by the structure and function of the human brain. These networks are capable of 

processing vast amounts of data and extracting intricate patterns and features, making them 

well-suited for tasks such as image recognition, natural language processing, and speech 

recognition. 

Logical reasoning is another key aspect of AI, involving the use of formal rules and logical 

principles to derive conclusions and make inferences. This technique is often employed in 

areas such as knowledge representation, expert systems, and automated reasoning. 

The applications of AI span across various domains, showcasing its versatility and impact on 

modern society.  

 In the field of medicine, AI is used for diagnostic imaging, drug discovery, 

personalized medicine, and patient management.  

 Industrial automation leverages AI technologies for process optimization, predictive 

maintenance, and quality control.  

 Data analysis and analytics benefit from AI-powered algorithms for pattern 

recognition, anomaly detection, and predictive modelling. 
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 Also autonomous vehicles represent a prominent application of AI, where machine 

learning and computer vision algorithms enable vehicles to perceive and navigate their 

environment independently.  

 Recommendation systems, commonly seen in e-commerce platforms and streaming 

services, utilize AI to personalize content and make tailored suggestions to users based 

on their preferences and behaviour. 

 Virtual assistants like Siri3, Alexa4, and Google Assistant5 exemplify AI applications 

in virtual assistance, employing natural language processing and machine learning 

techniques to understand and respond to user queries and commands6.  

 Robotics is another domain where AI plays a crucial role, enabling robots to perform 

complex tasks in industrial settings, healthcare, exploration, and entertainment. 

Hence, it is safe to say that artificial Intelligence (AI) has permeated virtually every aspect of 

modern life, showcasing its ubiquitous presence and impact across diverse domains. From 

machine learning and deep learning algorithms powering advanced pattern recognition and 

decision-making systems to logical reasoning techniques facilitating knowledge 

representation and automated reasoning, AI technologies have become integral to numerous 

applications.  

 

Figure 2: Machine Learning process 

                                                
3 https://www.apple.com/siri/ 
4 https://www.alexa.com/ 
5 https://assistant.google.com/ 
6 V. Kumar, A. Dixit, R. R. G. Javalgi e M. Dass, «Research framework, strategies, and applications of 
intelligent agent technologies (IATs) in marketing,» Journal of the Academy of Marketing Science, vol. 44, n. 1, 
pp. 24-45, 2016. 
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The phases of AI - namely learning, reasoning, and action - collectively represent the 

iterative and dynamic nature of AI systems as they interact with data and respond to various 

stimuli. 

1. Learning: 

The learning phase is fundamental to AI systems as it involves acquiring knowledge, 

skills, and patterns from data or experience. Machine learning algorithms, for 

instance, learn from labelled or unlabelled datasets to identify patterns and 

relationships, enabling the system to recognize and classify new data points. Deep 

learning models take this a step further by learning hierarchical representations of 

data, which are essential for tasks like image recognition and natural language 

processing. Reinforcement learning algorithms learn through trial and error, receiving 

feedback from the environment to refine their decision-making processes.  

So, the learning phase grants AI systems the ability to recognize patterns, make 

predictions, and adapt to new information. 

 

2. Reasoning: 

The reasoning phase includes the processes of inference, decision-making, and 

problem-solving based on the knowledge acquired during the learning phase. Logical 

reasoning techniques, such as deductive and inductive reasoning, allow AI systems to 

draw conclusions and make inferences based on logical rules and patterns. 

Probabilistic reasoning techniques, such as Bayesian inference, enable systems to 

assess uncertainties and make decisions based on probabilities. Additionally, symbolic 

reasoning techniques, including knowledge representation and rule-based systems, 

facilitate complex problem-solving and decision-making in domains like expert 

systems and automated reasoning. Reasoning enables AI systems to analyze 

information, derive insights, and make informed decisions or recommendations. 

 

3. Action: 

The action phase involves the execution of decisions or tasks derived from the 

learning and reasoning phases, resulting in tangible outcomes or responses. This phase 

is where AI systems interact with the external environment or users, applying their 
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knowledge and reasoning capabilities to generate actions or responses.  

In autonomous systems like self-driving cars, the action phase involves navigation, 

control, and decision-making based on real-time sensory input and learned models. 

In conversational AI systems, the action phase entails generating appropriate 

responses or actions based on user inputs and the system's understanding of the 

context.  

Overall, the action phase bridges the gap between AI systems' internal processes and 

their external interactions, manifesting in behaviours, decisions, or outputs that impact 

the surrounding environment. 

 

In AI, the actors (“who act”) are the so-called intelligent agents. These agents, acting as the 

primary actors in AI, interact with their environment through a process of perception and 

action. Equipped with sensors, they gather information from their surroundings, while 

actuators enable them to respond and act upon this data, whether in virtual or physical 

domains. 

What distinguishes intelligent agents is their autonomy and goal-driven nature.  

They are designed to operate independently, pursuing specific objectives or tasks without 

constant human intervention. This autonomy is powered by a sophisticated process that 

involves collecting and analyzing data using AI algorithms, leading to informed decision-

making and action. 

The complexity of intelligent agents varies widely, from basic rule-based systems to 

advanced machine learning or reinforcement learning-based agents. While some agents rely 

on predefined rules and responses (reactive agents), others can learn from experience and 

improve their performance over time, Through continuous learning and feedback loops, they 

refine their capabilities, leading to improved performance and effectiveness over time. This 

adaptability and learning ability enable them to navigate complex scenarios and make 

informed decisions in dynamic environments. 

In practical terms, intelligent agents find application across a range of domains and contexts. 

For instance, chatbots leverage natural language processing to provide user assistance, while 

autonomous driving systems use sensor data to make real-time decisions for safe navigation 
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on roads. These applications showcase the versatility and utility of intelligent agents in 

modern AI ecosystems. 

 

Figure 3: Intelligent agents actions schema 

The behaviour of intelligent agents is influenced by a multitude of factors, both internal and 

external. 

 Internally, these agents rely on accurate perception, defined goals, knowledge 

acquisition, reasoning processes, and decision-making mechanisms.  

 Externally, factors such as feedback from the environment, user interactions, 

constraints, and rules shape their actions and responses. 

More specifically, an agent's actions are influenced by a combination of internal and external 

factors that determine its behaviour and decisions.  

Firstly, environmental perception plays a fundamental role: through its sensors, which can be 

cameras, microphones, motion sensors, and other devices, the Agent is able to gather 

information from the surrounding environment. This information, obtained through 

environmental perception, directly influences the decisions and actions taken by the Agent. 
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Another determining factor is the agent's goals and evaluation function. Each agent has 

specific goals to achieve and an evaluation function that determines how to assess the various 

possible actions in relation to these goals. In this way, the agent seeks to maximize its 

evaluation function by choosing actions that are expected to lead to the desired results. 

Knowledge and information are further elements that influence the agent's behaviour.  

agents can have a predefined knowledge base or acquire knowledge from experience or 

learning. This knowledge, which may include rules, models, strategies, historical data, and 

more, impacts the actions taken by the agent. 

Reasoning and decision-making processes are also integral to an agent's functioning. By 

using reasoning algorithms and decision-making processes, the agent can process the 

available information and make decisions based on that information. This can involve 

weighing different options, predicting the outcomes of actions, or applying optimization 

strategies. 

Interactions and feedback are other important aspects that influence the agent's behaviour 

because agents can interact with the surrounding environment, other agents, or users, 

receiving feedback that will influence their future actions. For instance, an agent learning 

through reinforcement may receive rewards or penalties based on the actions taken, thus 

influencing its future behaviour. 

Finally, constraints and rules may limit the actions that the agent can take. These constraints 

may be imposed by technical, ethical, legal, or security factors and influence the agent's 

decisions and actions.  

Below are some of the main types of artificial intelligence (AI) systems that have evolved 

over time, taking into account their hybrid nature and combination of multiple techniques to 

address complex tasks. 7 

 Specialized artificial intelligence systems serve as a first example, focusing on 

specific tasks or narrow domains. These systems are optimized for a single activity 

and use dedicated algorithms to solve particular problems, as demonstrated by 

                                                
7 David L.Poole, Alan K. Mackworth «Artificial Intelligence: Foundations of Computational Agents». 



13 
 

DeepMind's AlphaGo8, specialized in the game of Go and known for defeating world 

Go champion Lee Sedol in 2016. 

 

Figure 4: AlphaGo logo 

 In contrast, flexible artificial intelligence systems are designed to adapt to a wide 

range of tasks and domains, learning from diverse data and applying acquired 

knowledge to new contexts. These systems, like Google's TensorFlow9, are based on 

machine learning and deep learning, allowing developers to create models for various 

applications. 

 

Figure 5: TensorFlow logo 

 Lastly, hybrid artificial intelligence systems combine different techniques and 

approaches, such as rule-based reasoning and machine learning, to achieve optimal 

performance in various situations, as demonstrated by IBM Watson10, which integrates 

various technologies to solve complex problems across different sectors. It is 

important to note that these types of systems are not mutually exclusive and can be 

combined or integrated depending on the specific needs of the application. Artificial 

intelligence continues to evolve, introducing new approaches and paradigms that 

                                                
8 https://www.deepmind.com/research/highlighted-research/alphago/ 
9 https://www.tensorflow.org/about 
10 https://www.ibm.com/watson 
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expand the possibilities and capabilities of AI systems, including intelligent agents 

that act within the context of artificial intelligence. 

 

Figure 6: IBM Watson logo 

In summary, AI represents a dynamic and evolving field with vast potential to revolutionize 

industries, enhance productivity, and improve human lives.  

By harnessing advanced techniques and technologies, AI systems continue to push the 

boundaries of what machines can achieve, forming the way for a future where intelligent 

systems collaborate seamlessly with humans to tackle complex challenges and drive 

innovation.  
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2.2. Recommender systems 

In our current times, the proliferation of information and choices has become both a boon 

and a challenge for individuals seeking to navigate all the options available to them.  

Recommender systems emerge as invaluable tools in this context, designed to alleviate the 

burden of choice overload by providing personalized recommendations tailored to individual 

preferences and needs.  

At their core, recommender systems serve the fundamental purpose of assisting users in 

making informed decisions among all the available options, whether in the domain of 

entertainment, shopping, or, also, dietary choices. 

Central to the functioning of recommender systems are the entities that constitute their 

framework: 

 objects; 

 users; 

 transactions; 

Objects represent the items or entities being recommended, which could range from movies 

and books to products and recipes.  

Users, on the other hand, are the individuals for whom recommendations are generated, each 

characterized by their unique preferences, behaviours, and past interactions with the system. 

Transactions encapsulate the interactions between users and objects, providing valuable data 

that forms the basis for recommendation generation. 

The operation of a recommender system typically unfolds through several distinct phases, 

each playing a crucial role in the recommendation process: 

1. Training Phase: 

The training phase represents the foundations upon which the recommender system is 

built. During this phase, the system gathers and processes a vast amount of data, 

including user interactions, item attributes, and contextual information.  

This data is then used to construct a comprehensive model of user preferences and 

item characteristics. Techniques such as machine learning algorithms, data mining, 
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and statistical analysis are employed to extract patterns and insights from the data, 

enabling the system to understand the underlying relationships between users and 

items. 

 

2. User Modeling Phase: 

With the main model in place, the recommender system proceeds to the user modeling 

phase. Here, the system refines its understanding of individual user preferences based 

on their interactions with the system over time. Furthermore, in the user modeling 

phase, ongoing research by Zhou et al.11 focuses on enhancing user modeling through 

the incorporation of multimodal data, such as user preferences expressed through text, 

images, and social interactions. By leveraging multimodal information, recommender 

systems can better understand user preferences and provide more personalized 

recommendations.  

 

3. Filtering and Recommendation Phase: 

The culmination of the recommendation process occurs in the filtering and 

recommendation phase. Drawing upon the insights obtained from the training and user 

modeling phases, the system employs filtering techniques to navigate through vast 

amounts of data and identify items that are most likely to appeal to individual users.  

These filtering techniques may include content-based analysis, collaborative filtering, 

or hybrid approaches that combine multiple recommendation strategies. By 

considering factors such as item relevance, user similarity, and contextual relevance, 

the system generates personalized recommendations tailored to each user's unique 

preferences and needs. 

 

Several approaches have been developed to address the diverse needs and challenges 

encountered in recommendation tasks. 

                                                
11 Zhou, H., Zhou, X., Zeng, Z., Zhang, L., & Shen, Z. (2023, February 9). A Comprehensive Survey on 
Multimodal Recommender Systems: Taxonomy, Evaluation, and Future Directions. 
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 The content-based approach involves aligning information about an item's content 

with the user's profile, including the item's description, attributes, keywords, and 

labels. These details are compared with the user's profile, constructed by analyzing the 

items the user has engaged with during their navigation. Based on this comparison, the 

recommendation system suggests items to the user that align with their interests. 

Content-based approaches often employ reliable and probabilistic estimation 

techniques, such as Bayesian classifiers. An example application of the content-based 

approach is the "Recommended for You" section on Netflix, where the system offers 

movie suggestions based on content similarities to the user's watched films. 

 

Figure 7: Content Based approach 

 

 

Figure 8: Netflix's content based approach 



18 
 

 

 On the other hand, the Collaborative Filtering approach utilizes collaborative 

algorithms to generate recommendations. This approach centers around the concept of 

"neighbourhood," representing users with similar tastes and preferences to the user for 

whom the recommendation is intended. In this process, users assign ratings to items, 

and based on these ratings, the active user's neighbourhood is identified. 

Subsequently, items that are highly regarded by the neighbourhood and have not been 

explored by the user are recommended. Collaborative approaches can be categorized 

into User-To-User and Item-to-Item methods.  

 

Figure 9: Collaborative Filtering approach 

 

o User-To-User: the goal here is to identify the neighbour of the active user who 

has the highest similarity. This is achieved by calculating similarity functions 

such as cosine similarity or Pearson similarity. Once the neighbour is 

identified, predictions are made for the values of items that the neighbour has 

rated but the active user has not. Finally, the item with the highest value is 

recommended. 

For instance, Amazon also uses collaborative filtering to suggest products 

based on what similar users have watched and rated. 
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Figure 10: Amazon's Collaborative Filering approach User-To-User 

 

o Item-to-Item: In this approach, the focus is on items known to appeal to the 

active user. Similarity is sought between the active user's items and all other 

items to recommend an item that might interest the user. This approach is used, 

for example, by Spotify to create the Discovery Weekly playlist every week. 

 

Figure 11: Spotify's Collaborative approach Item-To-Item 

 

Despite its potential, the collaborative approach faces challenges such as data sparsity and 

the "cold start" problem. Data sparsity occurs when there are few ratings available for items, 

which can compromise the effectiveness of recommendation algorithms. Additionally, the 

"cold start" problem arises when new items lack user interactions and ratings, making it 

challenging for a collaborative algorithm to handle such situations. 



20 
 

Hybrid approaches combine elements of both the content-based and collaborative 

approaches.  

These approaches can be categorized based on how they integrate these two methods, such as 

separate implementation followed by combining predictions, incorporating content-based 

features into the collaborative approach, incorporating collaborative features into the content-

based approach, or building a unified model.  

 

Figure 12: Hybrid approach 

In the context of dietary choices, recommender systems hold significant potential to 

revolutionize how individuals approach nutrition and meal planning.  

However, food recommender systems face unique challenges that must be addressed to 

realize their full potential. One such challenge lies in the inherently subjective nature of food 

preferences, which can vary widely among individuals based on cultural, dietary, and 

personal factors. Additionally, the complex interplay of nutritional considerations, taste 

preferences, dietary restrictions, and meal variety further complicates the recommendation 

process. 

Hence, unlike traditional recommender systems tailored for movies or products, food 

recommender systems needs to handle the complex relationship between taste preferences 

and nutritional considerations.  

While user preferences certainly play a pivotal role in guiding recommendations, the 

overarching objective of promoting healthy recipes introduces an added layer of complexity.  

This requires moving away from the conventional approach of simply suggesting items based 
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on user likes or ratings, since prioritizing taste alone may not align with the broader goal of 

fostering nutritious eating habits. 

Despite these challenges, food recommender systems offer promising solutions to address the 

pressing need for personalized and health-conscious dietary guidance. 
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2.3. Conversational agents & Chatbots 

Conversational agents, or conversational systems, have witnessed significant advancements 

since the inception of the ELIZA conversational agent by Weizenbaum in 196612.  

ELIZA was one of the earliest examples of a natural language processing program designed 

to simulate conversation. The conversational agent operated by employing simple pattern-

matching techniques to recognize and respond to user input, emulating the role of 

psychotherapist. Despite its rudimentary capabilities, ELIZA achieved remarkable success in 

engaging users in seemingly meaningful conversations by reflecting users' statements back to 

them in the form of questions and prompts. 

What set ELIZA apart was its ability to elicit emotional responses from users, often leading 

them to anthropomorphize the program and attribute human-like qualities to it. By exploiting 

the human tendency to anthropomorphize, ELIZA demonstrated the potential for computers 

to simulate human-like conversational behaviour, laying the groundwork for subsequent 

developments in conversational AI. 

 

Figure 13: Conversational agent ELIZA 

                                                
12 Joseph Weizenbaum. Eliza—a computer program for the study of natural language communication 
between man and machine. Communications of the ACM, 9(1): 36–45, 1966. 
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Hence, conversational agents have a 

longstanding history, and their resurgence in 

recent times can be attributed to a confluence of 

practical and technological motivations. From a 

practical standpoint, there is a growing demand 

for more natural interaction strategies that mimic 

human conversation. This is particularly evident 

in scenarios such as driving, where users require 

hands-free and intuitive interfaces. Additionally, 

there is a need to automate certain tasks, such as 

customer relationship management (CRM), to 

enhance efficiency and productivity. 

On the technological front, advancements in algorithms have played a pivotal role in 

revitalizing conversational agents. Improved algorithms for processing voice and audio, 

understanding user input, and handling natural language both in input and output have 

significantly enhanced the capabilities of conversational agents. These advancements have 

paved the way for more seamless and context-aware interactions between users and 

conversational agents. 

 

Figure 15: Several conversational agents 

In terms of input, conversational agents consider the dialogue history, which includes the last 

few utterances exchanged, and optionally, background knowledge to enrich the conversation 

Figure 14: Conversational agent Clippy 
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context. As for output, the agent generates the next utterance to interact with the user in each 

turn, along with the possibility of performing specific actions, such as recommending items 

or controlling devices like lights or music players. 

Conversational agents can be broadly categorized into open-domain and goal-oriented 

agents.  

 Open-domain agents are designed for generic chit-chat conversations and can handle a 

wide variety of topics. 

 

Figure 16: Open-domain agent Chat-GPT 

 Goal-oriented agents are tailored for specific domains and are adept at guiding 

conversations to fulfil user tasks, such as booking flights or recommending movies. 

Figure 17: Goal-oriented agent Zalando helper 
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One key distinction in conversational systems lies in their architecture, with systems 

categorized as either modular or end-to-end.  

 Modular conversational systems include distinct components, each responsible for a 

specific aspect of the conversation, such as automatic speech recognition, natural 

language interpretation, dialog management, natural language generation, and text-to-

speech synthesis.  

 In contrast, end-to-end systems integrate all functionalities into a single framework, 

offering a streamlined approach to conversation processing. 

 

In this context, conversational recommender systems (CRSs) have emerged as a specialized 

application aimed at facilitating personalized recommendations through conversational 

interactions. “A CRS is a software system that supports its users in achieving 

recommendation-related goals through a multi-turn dialogue”13, they integrate 

recommendation capabilities into the conversational flow, enabling users to receive tailored 

recommendations during dialogue exchanges. They focus on guiding the users through a 

natural conversation to collect their preferences14 instead of asking them to list all at once. 

Input processing for conversational recommender systems (CRSs) involves determining the 

most suitable interaction modes and strategies.  

In particular, CRSs must support various interaction types, including natural language, 

buttons, or a mix of both, depending on user preferences and the context of use.  

The choice of interaction strategy, such as voice, text, or other forms like handwritten input, 

impacts the user experience significantly and should align with the system's capabilities and 

user expectations.  

Understanding and processing user inputs it’s not a trivial task and require robust intent 

recognition mechanisms to extract the user's underlying needs and intentions accurately. 

                                                
13 Jannach, Dietmar, et al. "A survey on conversational recommender systems." ACM Computing Surveys 
(CSUR) 54.5 (2021): 1-36. 
14 Michael Jugovac and Dietmar Jannach. Interacting with recommenders – overview and research directions. 
TiiS, 7(3):10:1–10:46, 2017. doi: 10.1145/3001837. URL https://doi.org/10.1145/3001837. 
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User modeling in CRSs is crucial for personalizing recommendations based on user 

preferences and informative needs. This involves modeling not only objective features, such 

as user demographics and past interactions, but also subjective features like user preferences, 

interests, and contextual factors. Then, the recommendation process involves managing the 

preference elicitation phase and transitioning to the recommendation phase seamlessly. 

Effective dialogue state management is essential to track the user's current preferences and 

guide the recommendation process accordingly.  

Output generation instead, focuses on managing user feedback, continuing the dialogue flow, 

and presenting recommendations in a user-friendly manner. 

Returning recommendations in a clear and understandable format is crucial, and explanations 

can enhance user trust and comprehension.  

Semantics also plays a fundamental role in understanding user queries and generating 

appropriate responses15, for all the reasons listed so far, the design of CRS involves several 

key components, such as: 

 dialog manager;  

 intent recognizer;  

 entity recognizer; 

 sentiment analyzer;  

 

Figure 18: CRS general architecture 

                                                
15 Lops Pasquale, Musto Cataldo, Narducci Fedelucio, Semeraro Giovanni, "Semantics in Adaptive and 
Personalised Systems", Springer. 
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The dialog manager orchestrates the conversation flow. It manages the sequencing of 

dialogue turns, maintains context across exchanges, and coordinates the handover between 

different system components. 

The intent recognizer identifies the user's intent or request. By identifying the user's 

underlying intent, it enables the system to tailor its responses and recommendations 

accordingly, ensuring relevance and effectiveness in meeting user needs. 

The entity recognizer extracts relevant entities or parameters from user input, facilitating 

context-aware recommendation generation. By parsing user input and identifying relevant 

entities, the entity recognizer facilitates the creation of personalized recommendations that 

align with user preferences and requirements. 

Additionally, the sentiment analyzer assesses user sentiment or feedback, enabling the system 

to adapt recommendations based on user preferences and satisfaction. 

CRSs are proved to be more effective for more complex recommendations with information 

overload. For example, planning a trip where multiple agents with different goals are 

required, or recommend a book/movie where the agent queries are mostly relevant to the 

system’s current context. 

An essential aspect of CRSs and, in particular, of this thesis experiment, is also granting clear 

explanations to users regarding the rationale behind recommendations. Clear explanations 

not only enhance user understanding and trust but also enable users to make informed 

decisions. 

In our endeavour, we’ll leverage Python16 as programming language and integrate the CRS in 

the Dialogflow platform17 by Google. Python offers a versatile and powerful programming 

environment, equipped with libraries and frameworks for natural language processing and 

machine learning. Dialogflow offers features such as natural language understanding, intent 

recognition, and context management, thereby streamlining the development and deployment 

process of our conversational recommender system. 

                                                
16 https://www.python.org/ 
17 https://cloud.google.com/dialogflow 
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2.4. State of the art 

Currently, there are several food recommender systems available in the market or open to the 

public. Among these, two notable ones are: 

 Yummly18: 

Yummly is a well-known food recommendation system accessible through both an 

app and website. Its recommendation algorithm incorporates various factors to 

provide personalized suggestions to users: 

o User Preferences: Yummly allows users to input their food preferences such as 

favourite or avoided ingredients, dietary restrictions (e.g., vegetarian, vegan, 

gluten-free, etc.), and personal tastes. 

o Recipe Reactions: Users can interact with recipes in different ways, like adding 

them to favourites, saving for later, or flagging favourite recipes. These actions 

impact future recommendations. 

o Popular Recipes: Yummly also considers recipes that are popular and highly 

rated by users when generating recommendations. 

                                                
18 https://www.yummly.com/ 

Figure 19: Yummly homepage 
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 AllRecipes19: 

AllRecipes is another platform for recipe collection and sharing that employs a 

recommendation system to propose new recipes to users. Key features of AllRecipes' 

recommendation system include: 

o User-Favorite Recipes: AllRecipes tracks recipes favoured by users, using them 

to suggest other similar or related recipes. 

o Reviews and Ratings: User reviews and ratings of recipes are factored into the 

recommendation algorithm. Well-reviewed and positively rated recipes are 

more likely to be recommended. 

o Cuisine Style: AllRecipes considers users' preferred cuisine styles such as 

Italian, Mexican, Asian, etc., and suggests recipes based on these preferences. 

o Trends and Popularity: AllRecipes' recommendation algorithm also takes into 

account culinary trends and popular recipes of the moment to provide updated 

and relevant suggestions. 

                                                
19 https://www.allrecipes.com/ 

Figure 20: AllRecipes homepage 
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However, despite these features, neither of these platforms currently emphasizes macros or 

calories as primary recipe features, nor do they address user goals related to nutrition. 

Instead, they focus on suggesting recipes that users might enjoy without incorporating 

detailed nutritional information about the recipes. 

Fewer conversational food recommender systems are available 

compared to traditional platforms, and none of them delve deeply 

into the unique characteristics of users as comprehensively as our 

bot. For instance, many of these systems, such as Mealime 20- a 

meal planning app that includes a conversational chatbot feature. 

Users can chat with the chatbot to receive personalized recipe 

recommendations based on their dietary preferences, cooking 

habits, and available ingredients -  do not prioritize macros or 

calories as primary recipe features, nor do they address user 

goals related to nutrition in a detailed manner. Instead, they 

primarily focus on suggesting recipes that users might enjoy 

based on general preferences without incorporating 

comprehensive nutritional information into their 

recommendations. 

Our bot has been specifically designed to bridge this gap by introducing advanced features 

analysis that takes into account users' personal preferences, including specific nutritional 

goals such as macros, calories, nutrients and much more. 

 

  

                                                
20 https://www.mealime.com/ 

Figure 21: Mealime's automated 
Facebook assistant 
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3. @food_recsys_bot 

3.1. The Overview 

Food recommendation systems play a significant role in providing personalized suggestions 

and recommendations to users based on their dietary habits, recipes of interest, and food 

preferences.  

These systems are designed to enhance user experience by offering tailored food choices that 

align with their individual needs and tastes.  

 

Figure 22: Food Recommender System's Idea 

However, despite their potential benefits, current food recommendation systems face several 

limitations that hinder their effectiveness and reliability. 

One of the primary limitations of current food recommendation systems is the lack of a 

guarantee that the recommended foods are truly healthy for users. While these systems may 

take into account certain nutritional parameters, they often do not comprehensively assess the 

overall healthiness of the recommended foods, which can lead to suboptimal dietary choices 

for users. 

Another significant limitation is the assumption that users' past food preferences will remain 

unchanged over time. This static approach ignores the potential for changes in users' diets, 
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lifestyles, and food preferences, which can significantly impact the relevance and accuracy of 

the recommendations provided by the system. 

Furthermore, food recommendation systems face a data scarcity issue, as users typically 

evaluate only a small portion of the available foods21. This limited data pool makes it 

challenging to find similar users or foods, thereby reducing the system's ability to generate 

relevant and diverse recommendations. 

To overcome these limitations, leveraging natural language processing (NLP) techniques has 

emerged as a promising approach. NLP techniques, such as conversational agents, enable 

food recommendation systems to acquire and filter data differently based on the user's real-

time situation and evolving preferences. By incorporating NLP techniques, food 

recommendation systems can facilitate impartial food evaluations by selecting foods based 

solely on personal information extracted from the user. 

This includes considering dietary restrictions, current food preferences, nutritional 

requirements, available time for cooking and many others, thereby enhancing the relevance 

and suitability of the recommended food choices. 

In this context chatbots serve as indispensable allies in creating a personalized and interactive 

experience for users. These intelligent conversational agents, powered by advanced natural 

language processing capabilities and artificial intelligence algorithms, engage users in 

meaningful dialogues to understand their unique dietary preferences, restrictions, and goals.  

Unlike traditional static interfaces, chatbots add a human-like touch by asking relevant 

questions, providing context-aware recommendations, and adapting their responses based on 

real-time user feedback.  

This dynamic interaction not only enhances user engagement but also enables the system to 

continually learn and improve its recommendations over time. 

Moreover, to enhancing user engagement and improving recommendation accuracy over 

time, chatbots also play a crucial role in promoting education and awareness regarding 

healthy eating habits and sustainable food choices. 

                                                
21 Rostami, M., Farrahi, V., Ahmadian, S., Jalali, S. M. J., Oussalah, M. (2023). A novel healthy and time-
aware food recommender system using attributed community detection. Expert Systems with Applications, 
221, 119719. https://doi.org/10.1016/j.eswa.2023.119719 



33 
 

By leveraging chatbots to deliver educational content in a personalized and interactive 

manner, food recommendation systems can empower users to make informed decisions that 

align with their health and sustainability goals. This educational aspect not only adds value to 

the user experience but also contributes to promoting healthier and more sustainable 

lifestyles on a broader scale. 

In line with this mission, our bot, @food_recsys_bot, is designed to not only recommend 

healthy recipes but also to educate and raise awareness about nutrition and sustainable food 

practices and its purpose is to serve as a recommendation system for healthy recipes with a 

focus on providing persuasive explanations for the suggestions.  

The bot aims to encourage users to adopt healthier eating habits by offering personalized 

recommendations based on their preferences, restrictions, dietary goals, nutritional needs and 

several other characteristics.  

Some of the functionalities offered by the bot are: 

 Providing personalized recipe recommendations: 

The bot takes into account users' dietary preferences, restrictions, goals, activity levels 

and many other factors to suggest healthy recipes that align with their preferences, but 

most importantly with their needs. 

 

 Offering persuasive explanations: 

The bot provides detailed explanations for its recommendations, including 

comparisons between recipes and insights into their nutritional values. These 

explanations are designed to educate users and motivate them to make healthier food 

choices. 

 

 User profiling and customization:  

The bot gathers essential information about users through a streamlined profiling 

process, allowing it to offer more accurate and relevant recommendations. Users can 

also modify their profiles to update their preferences and goals whenever they please. 
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Overall, @food_recsys_bot, empower users to make informed and healthier food choices by 

providing customized recipe recommendations and meaningful explanations tailored to their 

individual needs and preferences. 

Three are its main components: 

1. The bot itself: 

The @food_recsys_bot is the core component of this integrated system, serving as the 

interface through which users interact with the food recommendation system.  

The bot is designed to operate within the Telegram platform through Google 

Dialogflow, providing users with personalized recipe recommendations and 

persuasive explanations to enhance their experience. It handles user inputs, processes 

requests, and delivers relevant information and suggestions based on the user's profile 

preferences. 

 

2. The recommendations system: 

This is responsible for generating personalized recipe recommendations for users.  

It generates customized recipe suggestions by analyzing user input and profiles, 

incorporating data from the Italian site giallozafferano.it22 . It considers factors like 

dietary restrictions, caloric goals, and nutritional preferences to provide tailored 

recommendations promoting healthier eating habits. 

 

3. The explanation system: 

The explanation system plays a vital role in providing users with detailed insights and 

explanations regarding the recommended recipes. It enhances user understanding and 

awareness by delivering persuasive explanations that highlight the healthiness, 

nutritional benefits, and sustainability of the recommended recipes. The explanation 

system employs different explanation types. 

In particular for this thesis we will focus on the explanation methods foodGoals, 

foodMacros, sustainability and seasonality to provide insights into daily caloric intake, 

macronutrient distribution, ideal nutritional ratios and information about the 

                                                
22 https://www.giallozafferano.it/ 
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seasonality of ingredients as well as their level of sustainability. It also facilitates 

comparisons between recipes, allowing users to make informed decisions after 

receiving information about both recipes compared. The explanation system aims to 

change users' perspectives on food choices, encouraging them to adopt healthier 

eating habits and make informed dietary decisions. 

 

Figure 23: @food_recsys_bot structure 

 

3.2. The implementation 

3.2.1 The recommendation system 

The recommendation system's task is to provide users with coherent suggestions for dishes 

and recipes based on their characteristics. The core of this recommendation process lies in 

the information provided by the user through conversation with the chatbot, which is then 

processed as parameters for the recommendations. Specifically, this information includes the 

user's physical state, such as height, weight, and dietary goals, socio-demographic factors 

like age, lifestyle, or how much they are willing to spend on the dish they are seeking 

recommendations for.  

 

These insights are then processed in reference to the recipe dataset used for 

recommendations, structured so that each recipe is associated with various parameters that 

represent them, aligning with the information gathered from users. Given the extensive 

nature of the dataset, a recalculation of the score for each recipe based on all parameters is 
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utilized, achieved through a set of rules created based on Food Knowledge23. This ensures 

that recommendations are in line with users' preferences and needs, providing accurate and 

personalized suggestions. 

 

The recommendation service has been implemented in Python using the Flask framework, 

suitable for web application development. The recipes recommended by the chatbot are 

sourced from a dataset containing thousands of recipes from the GialloZafferano.it website. 

Various libraries were employed during development, such as "Pandas" for dataset handling 

and the "python-telegram-bot" library for suggestion requests.  

The parameters of the request include: 

 n: Specifies the number of recipes to extract. 

 category: Specifies the categories of recipes requested (i.e., "First courses," "Main 

courses," "Desserts"). 

 isLowNickel, isVegetarian, isLactoseFree, isGlutenFree, isLight: Boolean values 

indicating any dietary restrictions specified by the user, specified separately. 

 difficulty: Indicates the difficulty level of the recipe to recommend. 

 goal: Refers to the user's dietary goal. 

 user_cost: Indicates the user's preferred recipe cost. 

 user_time: Indicates the user's preferred recipe preparation time. 

 age: Refers to the user's age. 

 sex: Indicates the user's gender. 

 mood, activity, stress, sleep, depression: Integer values (0=yes, 1=no) related to the 

user's mood, activity, stress, sleep, and depression status. 

 fatclass: User classification based on BMI. 

 

The service primarily consists of two files for recipe recommendation: 

1. food_rs_webservice.py:  

This is the main file implemented as a Flask app. It reads information from the 

database, handles HTTPS requests, and creates recommendations in JSON format 

                                                
23  I. Paparella, «Progettazione e Implementazione di un Food Recommender System Basato su Holistic User 
Model» 2020. 
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considering the parameters passed by the user. The file also includes Flask app 

initialization, the definition of the endpoint for the '/’ route, and the main "score" 

function, which calculates a score for each recipe based on the "ratingValue" and 

"ratingCount" columns. 

 

2. recommender_script.py:  

This file is crucial for the connection between the recommender system and the 

Conversational Agent. It contains three classes: Recommendation, 

Recommendation_due and Recommendation_tre. They all have a static method for 

generating recipe suggestions based on user information. The Recommendation class 

handles a single recipe suggestion, while Recommendation_due and 

Recommendation_tre handle, respectively, two and three different suggestions, in 

order to prompt the user with a second or a third suggestion whenever the first one is 

not suitable. The classes process requests forwarded to the server, build the request 

URL, retrieve recipe data, and send a response containing the title and URL of the 

suggested recipe. 

 

In addition to this information, the code includes various lists such as RichIn.json, which 

contains foods categorized on their level of certain substance such as calcium, magnesium, 

iron and so on, or Seasonality.json and Sustainability.json that asses the levels of seasonality 

and sustainability of the recipes. These lists can be used to further filter the DataFrame based 

on user preferences or needs. 

 

This approach allows the chatbot to provide personalized suggestions based on user 

preferences and the availability of recipes in the dataset, ensuring an interactive and useful 

experience. 

 

3.2.2 The Explanation system 

The explanation system is responsible for formulating and providing users with explanations 

regarding the recipes recommended by the recommendation system.  
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When a person seeks new recipes to enrich their culinary knowledge, they are often skeptical 

and doubtful about whether the recipes align with their interests, intolerances, health 

conditions, or dietary restrictions. 

Therefore, it is crucial that, in addition to recipe suggestions, users can ask questions about a 

wide range of information, such as nutritional details, potential risks and benefits associated 

with nutrient intake, costs, preparation times, and adherence to dietary restrictions. 

 

The fact that users can interact in natural language with an entity like the chatbot stimulates 

their curiosity and cognitive ability regarding food, encouraging them to discover more 

recipes and information. The explanation system associated with the chatbot enables this by 

providing several different types of explanations (discussed later in this work) related to the 

recommended recipes, with options for single styles or comparisons. 

 

The explanations can be grouped into macro-categories, including nutritional aspects, 

personal factors (such as cost, preparation time, culinary skills, user's goals), health 

considerations (risks, benefits, and user's age), and recipe popularity. These explanations are 

available for both individual recipes and comparisons between two recipes. 

 

The explanation system is designed with dedicated modules for generating explanations in 

natural language based on the parameters received from the recommendation system, 

transferring explanations to the chatbot, and a main module that coordinates these operations. 

 

The explanation service has been implemented in Python, also utilizing the Flask micro-

framework. Unlike the recommendation system, the URL used for the request contains three 

mandatory parameters, concerning the style of explanation (whether the explanation is 

singular or comparative), the type of explanation (there are 19 provided explanation types), 

and the img_url of the recipe recommended by the recommendation service. 

 

There are three Python files forming the explanation service: 
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1. web_expl.py: 

This is the main file representing the web 

app written using Flask.  

The main function in the file is get_expl, 

which is associated with the path "/expl" 

in the application through the use of the 

@app.route('/expl') decorator. 

Upon application startup, paths to JSON 

files containing various information, 

including data on nutrients, dietary 

restrictions, foods rich in certain 

nutrients, food sustainability, food seasonality, and their relation to dopamine, are 

defined. 

Subsequently, within the get_expl function, the contents of the JSON files are read 

and loaded into corresponding variables. The path to a CSV file representing the 

recipe dataset is also specified. 

Recipes to compare are then identified through the URLs provided as parameters in 

the GET request. 

A scan of the rows of the CSV file is performed to find information corresponding to 

the URLs of the provided recipes. The recipe information is then stored in two 

variables, recipeA_values and recipeB_values. 

Following this, an empty dictionary user is created containing various user parameters 

provided as parameters in the GET request. 

Subsequently, two lists of experiments are defined, one for explanations related to a 

single recipe and the other for comparative explanations between two recipes.  

These lists contain strings representing the types of experiments that can be executed 

to generate explanations. 

An empty dictionary explanations is then created to store the generated explanations. 

The index of the requested experiment and the index of the desired explanation style 

in the GET request are checked. If the indices are valid, the corresponding 

explanations are generated using the get_str_exp function defined in the external 

Figure 24: /expl route 
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module called expl_types. The explanations are then added to the explanations 

dictionary. Finally, the explanations are converted to JSON format using Python's json 

library, and the resulting JSON is returned as the client's request response. 

 

2. expl_types.py: 

Its main function is get_str_exp, which is called by web_expl.py and coordinates the 

creation of justifications by selecting the specific type requested. 

The get_str_exp function accepts several parameters: 

 exp_type: a string representing the desired type of explanation. 

 recipeA_values and recipeB_values: the values of properties of the two recipes. 

 user: the dictionary containing user parameters created in web_expl.py. 

 

Within the get_str_exp function, a check is performed on the value of exp_type to 

determine which type of explanation should be generated. Based on the value of 

exp_type, the corresponding function is called to create the specific experiment. 

Other functions in the module contain implementations for creating specific types of 

explanations that will be later discussed. 

 

3. The third and final file related to the explanation service is expl_script, a file very 

similar to the previously described recommender_script. It is also an essential 

auxiliary file for the connection between the chatbot and the Recommender system. 

In this file, a single class named Explanation is defined, comprising 33 static methods, 

each related to the explanation and comparison types. The structure of all methods is 

the same; therefore, we will explain the general structure of a function related to 

explaining a single recipe and one related to comparing two recipes, which are then 

applicable to all functions. 

 

As a general example of explaining a single recipe, we take the "spiegazione_piatto" method, 

which is called when the user requests a general explanation of the recommended recipe. 
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This method, like all others, accepts two parameters: update and context, which are specific 

objects for interaction with the Telegram bot. The method structure is as follows: 

 

1. Initially, an empty list named restr_list is initialized, which will be used later to store 

dietary restrictions. 

2. The value of restrictions within the context.user_data dictionary, representing the 

recipe recommended by the recommendation service, is then checked.  

If a restriction is active (value equals 1), the corresponding identifier is added to the 

restr_list.  

3. Next, a parameter named restr is created, to which the restriction strings are 

concatenated, separated by a comma, using the join method. If restr_list is empty, restr 

will be set to None. 

4. An URL towards the external web service handling explanationsis then defined. 

5. Similarly, a dictionary named params is created, containing the parameters necessary 

for the web service request. These parameters include the type of explanation, the 

style, and other specific user information. 

6. The img_url parameter of the Recommendation class, is used to refer precisely to the 

just recommended recipe and perform explanations on it. 

7. A complete URL is created by including the parameters using the urlencode function 

from the urllib.parse library. The first three are mandatory parameters, concerning the 

type of explanation, the explanation style (0 represents the style of explaining a single 

recipe, 1 represents the style of and, -1 represents both ), and the URL of the image of 

the recipe recommended by the recommendation service. 
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Figure 25: Example of the created URL 

8. A GET request is made to the complete URL using the requests library, and the 

response is obtained as JSON.  

9. This JSON explanation is then processed, particularly from the "explanations" field. 

10.  If an explanation is present, a process of splitting the explanation into segments of a 

maximum length of 500 characters is performed to later translate the message. 

11. A response message containing the text is sent to the update sender.  

 

3.2.3 The Bot 

In the original version24 of the bot, the process of creation was divided into several phases: 

 

 User Interface Design: First and foremost, the organization of the chatbot's interface 

on Telegram was planned, using the "Python-Telegram-bot" library in the Python 

environment to manage conversations and interact with the Telegram API. 

 

 Conversation Flow Definition: The chatbot was programmed to initiate conversations 

with users following a conversation flow model. This model guides users through 

                                                
24 Lopedota, F. (2022/2023) "FoodRecSysBot": Progettazione e sviluppo di un Agente conversazionale per il 
supporto personalizzato nella scelta di cibo e ricette. 
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structured questions and answers, adapting the flow based on the received information 

and storing important details. 

 

 Integration with the Food Recommender System: Several Python libraries were used 

to connect the chatbot to the Food Recommender System. This system generates 

personalized culinary recommendations based on users' responses to personal 

questions. 

 

 Response Management: To efficiently handle the chatbot's responses, a Design Model 

based on Intents was adopted25. This model focuses on identifying user Intents and 

providing appropriate responses based on these Intents. The Dialogflow platform was 

used to train the chatbot to recognize user Intents using machine learning algorithms 

and provide coherent and relevant responses. 

 

The main file for the bot implementation is FoodRecommenderSys.py. In this file, the 

creation and structure of the Telegram bot that provides suggestions and explanations 

generated by the food recommender system are implemented. The bot interacts with users 

through a series of questions about their personal information and then uses the provided 

answers to offer personalized suggestions based on them. To set up a properly functioning 

and effective system that allows user interaction using natural language, various libraries and 

different techniques were used. The main ones are python-telegram-bot, an open-source 

library for developing Telegram bots using Python, and Dialogflow, which plays a 

fundamental role in processing user requests in natural language and linking to the Food RS.  

                                                
25 Amir Shevat «Designing Chatbots: Creating Conversational Experiences». 
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First, to create a bot on Telegram, you need to search for "BotFather" 

within the app itself and follow its instructions to create a new bot. The bot 

creation process involves obtaining a unique token from BotFather, which 

identifies the bot. Only after this can the bot code be written, importing the 

Telegram and Telegram.ext libraries that provide the necessary 

functionalities to interact with the Telegram API. 

Figure 26: BotFather chat example 

In the specific case of this thesis, the first part of the FoodRecommenderSys.py file declares 

a series of constants to define a conversation state management schema. These constants, 

such as "GENDER," "AGE," "MOOD," and others, are used as identifiers to indicate the 

current state of the user during interaction with the bot. Each state represents a specific 

question asked to the user regarding their information related to that constant. This is done 

Figure 23: BotFather logo 
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through a ConversationHandler object, which defines all states and specifies which functions 

should be executed when the user is in each of these states. 

 

For instance, if the user is in the GENDER state, it means that the user is currently 

responding to the gender question (and the gender function will be executed), or AGE if the 

chatbot is waiting for the user to provide their age (which will be processed with the age 

function). After defining these constants, all the functions that allow the bot's operation are 

set up. 

 

The "start" function serves as the bot's initial function when a user begins a conversation 

using the "/start" command which it the default command when initiating a new conversation 

with a telegram chatbot.  

This function prompts the user to choose their gender by typing "Man" or "Woman".  

Following this, the chatbot presents a series of questions with corresponding buttons for user 

selection, allowing for information gathering. The user's gender response is stored in their 

information, and the subsequent "gender" function verifies and records this data. If the user's 

response is invalid, the chatbot remains in the gender selection state until a correct response 

is provided. Similar button-based interactions are used for subsequent questions regarding 

age, weight, and other preferences, maintaining a consistent structure throughout the 

conversation flow. 

In each of these functions, the user's responses are stored in context objects, which will be 

the parameters of the request sent to the recommendation and explanation servers (an 

example of a request can be seen in the previous paragraph). 

 

The process is repeated until all questions posed to the user are completed, and the last 

function returns a ConversationHandler.END to declare the end of the conversation states. 

Before moving on to the main part, it is worth further discussing the "dialogflow_mode" 

function.  

It uses the Google Cloud Dialogflow service to interpret the user's message and provide a 

response based on the detected Intent. Depending on the detected Intent (e.g., "suggestion" or 

"explanation goal" etc.), the bot calls the appropriate functions belonging to the 
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recommender_script.py and expl_script.py files described earlier to provide the requested 

information to the user. 

We thus come to the end of the implementation part with the main program "main()." Here, 

the necessary objects are initialized to start the Telegram bot and manage user interactions. 

First, the logger is initialized, which is an object that records program events during 

execution, such as information log messages, warnings, or errors. In the case of this project, 

it is used to format and display log messages in a specific format specified by the format 

string '%(asctime)s - %(name)s - %(levelname)s - %(message)s', and it also confirms the 

bot's correct startup. 

 

Next, an Updater object is created. The Updater is the main component of the python-

telegram-bot library that handles interactions with the Telegram API. It requires the Telegram 

API access token to identify the bot, which was provided by BotFather. 

 

Once the Updater is created, its dispatcher (event handler) is obtained. The dispatcher is 

responsible for routing messages from Telegram to the corresponding message or command 

handlers you will define later. In practice, it listens for and routes user requests to the 

appropriate code. Subsequently, a ConversationHandler object is created to manage the 

conversation flow with users. So, among the main components of the bot there are the 

conversational and command handlers used to manage user interactions and execute specific 

actions within the bot, in particular: 

1. Conversational Handlers:  

These handlers manage conversations with users by defining entry points, states, and 

fallbacks.  

Each conversational handler has entry points that are typically triggered by command 

handlers or specific user actions.  

States represent different stages or steps within a conversation, and they are associated 

with message handlers that handle user input during those states.  

Fallbacks are used to handle unexpected or invalid user input during a conversation. 

 

2. Command Handlers:  
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These handlers execute actions based on user commands or inputs.  

Each command handler is associated with a specific command (e.g., "/create", 

"/modify", "/clear_session") that users can input to trigger a particular action. 

Command handlers are typically used for tasks like initiating profile creation or 

modification, clearing session data, or starting specific conversation paths. 

 

 

Figure 27: Sequence diagram 
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That being said, the bot was re-implemented for this thesis due to some issues with the 

previous version. In particular reimplementing the bot involved updating project 

requirements to address the deprecated python-telegram-bot v13.4 library, necessitating an 

upgrade to version 20.726. This update brought significant changes to the main function logic, 

replacing the dispatcher with the Application component that encapsulates crucial elements 

for bot execution, such as the updater and dispatcher itself.  

Additionally, the new version of the library required the adoption of the async-await 

paradigm that facilitated handling responses asynchronously. Hence, within the main module, 

all functions were modified to adhere to this paradigm, enabling response management to 

occur asynchronously by awaiting the resolution of message updates on the chat-bot side 

before concluding.  

These modifications were essential to ensure the bot's functionality and responsiveness, 

optimizing user interactions and overall performance. Then also some features were 

enhanced, let’s delve into the details of the modifications:  

 The explicit comparison between recipes has been improved significantly enhancing 

user experience and decision-making within the system.  

Previously, users were presented with a mere list of facts without a clear preference 

between recipes, leaving the final decision solely to the user's responsibility.  

However, with the updated explanation module, users are now provided with a clearer 

preference in comparative explanations, offering a real suggestion in the comparisons.  

This means that the system now evaluates and highlights one of the recipes as better 

than the other, facilitating users in making informed choices. 

                                                
26 https://pypi.org/project/python-telegram-bot/20.7/ 
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Figure 28: Example of better comparion - specifically in the end 

 

 In the previous project, there was no provision for users to modify their data.  

However, the /modify command was introduced, managed through three functions and 

a dedicated conversational handler. In particular: 

o modify_profile(update: Update, context): It checks if the "gender" attribute is 

present in the user's data. If not, it replies with a message indicating that the 

profile hasn't been created yet and suggests using the "/create" command first. 

If the profile exists, it constructs a message displaying the current profile 

attributes and asks the user what attribute they want to modify. The function 

ends by returning the ATTRIBUTE state. 

o choose_attribute(update: Update, context): This function handles the user's 

choice of attribute to modify in their profile. It takes the user's input, converts it 

to lowercase, and checks if it matches any predefined attributes in the 

attribute_options dictionary. If there's a match, it constructs a message with 

options related to that attribute and sends it to the user with a keyboard for 

selection.  

If the user selects "none," it ends the conversation. If the input doesn't match 

any options, it asks the user to repeat the input. The function returns 
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TO_CHOICES after sending the attribute options message to the user, 

indicating a transition to the next step in the conversation. 

o change_attribute_value(update: Update, context):  this function handles various 

attribute changes based on user input. It retrieves the user's input text and 

converts it to lowercase then checks the value against a series of if-elif 

conditions to determine which attribute the user wants to change and performs 

the corresponding action. For each valid input value, it prints a debug message, 

sends a reply confirming the attribute change, updates the corresponding 

attribute in the context.user_data dictionary, and ends the conversation handler 

(ConversationHandler.END). 

Hence, this command enables users to adjust their preferences by initiating profile 

modification. Through a guided process, users can select and modify specific 

parameters, culminating in a confirmation message to confirm the changes. 

Figure 29; Profile modification process 
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2. The User Profiling process has been simplified by reducing the initial set of questions 

from 22 to around 10, focusing on gathering essential information for 

recommendations while minimizing user inconvenience. Default values are assigned 

to parameters not set by the user, typically set to their mean value. Users are informed 

of this defaulting practice and are given the option to modify all profile values using 

the /modify command. This streamlined approach ensures efficient data collection and 

user control over their profile settings. 

3. In addition, a new approach has been implemented for the foodGoals explanation 

type, particularly focusing on the computation of daily caloric intake. In the previous 

version, the calculation was based on the assumption that a single meal constitutes 

about 40% of the daily caloric intake, which seemed somewhat inaccurate.  

To address this, the function has been completely reworked to calculate daily caloric 

intake based on gender, goals (such as losing, gaining, or maintaining weight), and 

Figure 30: Streamlined profile creation process 
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activity level. This refined approach is applied in both single explanations and 

comparisons, ensuring accuracy and relevance in nutritional recommendations.  

Specifically: The function now assesses a recipe's suitability for a user based on their 

nutritional goals and activity levels. It calculates the daily calorie intake based on the 

user's sex, goal (lose, gain, maintain weight), and activity level (low, normal, high). 

The function provides positive language and commitment in acknowledging the user's 

actions towards their goals. It includes social proof by mentioning that many users 

with similar goals and activity levels have enjoyed the recipe. 

 

Figure 31: Example of new foodGoals 
 

4. Furthermore, to improve user safety and sensitivity, the dopamine-based explanation 

and comparison type has been removed. This kind of explanations focused on the 

dopamine production based on the consumption of certain foods, but the decision was 

made after discussions with Professor Musto, the thesis supervisor, considering the 

potential risks involved, especially for users affected by depression or related 

conditions.  

 

5. Instead, a novel method called foodMacros has been introduced to enhance 

explanation and comparison processes. This approach focuses specifically on the 

macronutrients found in recipes, namely carbohydrates, fats, and proteins, and it 

establishes an ideal ratio derived from relevant nutritional research. By meticulously 

analyzing deviations from this ideal distribution, foodMacros provides personalized 

recommendations based on nutritional values. This ensures a more tailored and 

effective approach in guiding users towards healthier eating habits. Specifically, the 

foodMacros method initiates with a conversion to decimals using the formula 
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ideal_macros["carbs|fat|proteins"] / 100. This step simplifies subsequent calculations 

and comparisons. The term "total_recipe_macros" denotes the sum of actual values of 

carbohydrates, fats, and proteins present in the recipe. Subsequently, the expected 

nutrient content is defined through the formula total_recipe_macros * 

(ideal_macros["carbs|fat|proteins"] / 100). By multiplying the total recipe macros by 

the ideal distribution percentage, this formula computes the hypothetical nutrient 

content that would be present if the recipe precisely matched the ideal distribution. 

Moving forward, the method defines deviation formulas as follows: 

recipe_macros["carbs|fat|proteins"] -  

(total_recipe_macros * (ideal_macros["carbs|fat|proteins"] / 100)).  

These formulas calculate the deviation, which represents the disparity between the 

actual amount of carbohydrates, fats, or proteins in the recipe and the expected 

amount based on the ideal distribution. The deviation formula subtracts the expected 

nutrient amount from the actual content in the recipe. The resulting deviation value 

indicates the extent to which the actual content deviates from the expected content 

under the ideal distribution. Given the practical challenge of achieving a perfect match 

with the ideal ratio, a deviation range of [-4, 4] is considered healthy and appropriate, 

providing users with a realistic guideline for nutritional intake. 

 

Figure 32: Example of foodMacros 

6. Finally, since there was no provision for users to express a preference for the 

ingredients of the recipe to suggest. It was implemented a new feature: the User-

specific Request, in which users can ask the bot for a recommendation based on a 

specific ingredient or type of dish they provide. This is implemented just through a 
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new intent that takes into account the Dialogflow entity that represents the desired 

ingredient (or type of dish). The bot tries to fulfil the request by searching through the 

top 15 ranked suggestions. Upon receiving the request, the bot identifies the 

Dialogflow entity representing the ingredient or type of dish and transforms it into 

lowercase and singular form using the library inflect27. This transformation is also 

applied to the ingredients of each recipe checked along to their titles. If the bot finds a 

match, either in the title or ingredients of a recipe, it will return it as a suggestion to 

the user. However, if no suitable recipe is found based on the specified parameters, the 

bot will inform the user accordingly. 

 

Figure 33: User-specific request 

  

                                                
27 https://pypi.org/project/inflect/ 
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3.2.4. DialogFlow 

Google Dialogflow is a natural language 

understanding platform that allows 

developers to build conversational interfaces 

such as chatbots. It utilizes machine learning 

and AI techniques to understand and process user 

input in natural language, enabling human-like interactions between users and applications. 

In our endeavour, DialogFlow has been used for: 

1. Intent Recognition:  

Dialogflow can recognize user intents based on input text or voice, allowing 

developers to define how the system should respond to different user requests. The 

new DialogFlow agent not only maintains basic chitchat capabilities and welcoming 

features but also introduces a more organized structure by categorizing intents into 

five specific areas. These areas include: 

o Introduction:  

Provides general information about the bot and directs users to commands like 

/create for profile creation or /modify for profile modification. 

o Suggestion:  

Initializes the recommendation process after the user creates a profile, sending 

parameters to the recommendation system to generate recipe suggestions. 

o Change Suggestion: 

Allows users to request a change in the recommended recipe, providing an 

alternative if the first suggestion is not suitable. 

o Explanation:  

Enables users to inquire about the reasons behind a recommendation, 

nutritional values, cooking difficulty, and other intrinsic characteristics of the 

suggested recipe. 

o Comparison:  

Provides users with the option to compare two different recipes based on 

various criteria, helping them make informed decisions about their choices. 

    Figure 34: Dialogflow logo 
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2. Entity Recognition: 

Entity recognition plays a crucial role in enhancing the functionality of the bot, 

particularly in understanding and responding to user-specific requests.  

One key aspect of entity recognition is its ability to identify and extract various types 

of entities from user input. In the context of the bot's functionality related to user-

specific requests for ingredient-based recipes, entity recognition becomes especially 

important. The bot utilizes entity recognition to identify and extract the specific 

ingredients mentioned by the user in their request. 

 

3. Context Management: 

Dialogflow maintains context during conversations, enabling more contextually 

relevant responses and better handling of follow-up questions. 

 

To be able to use Dialogflow, Google Cloud is fundamental. 

Google Cloud is a suite of cloud computing services provided by Google, offering a wide 

range of solutions for building, deploying, and managing applications and data in the cloud. 

It provides infrastructure as a service (IaaS), platform as a service (PaaS), and software as a 

service (SaaS) offerings, enabling businesses and developers to leverage scalable and flexible 

cloud resources. 

In our case, through Google Cloud, we created a service account to generate credentials 

specifically for the Python connection between Dialogflow and the bot. To maintain 

confidentiality and privacy, new credentials were implemented and carefully managed. They 

were added to the .gitignore file, which prevents them from being tracked and uploaded to 

version control systems. This steps ensure secure and authenticated access, allowing the bot 

to interact with Dialogflow's APIs and services effectively. 

 

3.2.5. Explanations & Comparisons 

In discussing explanations and comparisons, it's essential to first understand the intent 

recognizer of Dialogflow. The intent recognizer, powered by machine learning models and a 
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list of training phrases, plays a crucial role in interpreting user intents specifically designed 

for the project. When a user sends a request to the chatbot, Dialogflow's Intent Recognizer 

analyzes the text and matches it with the existing intent's training phrases. Once the 

corresponding intent is identified, the system proceeds to the next module to process the 

request and provide a suitable response. 

Responses can be directly generated by the Dialogflow platform using the dedicated 

Responses module. Developers can create a list of responses within the specific Intent 

section. Alternatively, as in this project's case, the correct intent is identified to respond to the 

user by forwarding the request to an external server. The request is then processed, the result 

is structured into natural language, and finally sent to the user in text format. 

This workflow showcases the seamless integration of intent recognition and response 

generation in Dialogflow. By leveraging machine learning algorithms and a well-defined 

training dataset, the platform efficiently handles user queries, ensuring accurate interpretation 

of intents and timely delivery of relevant responses. This approach not only enhances user 

experience by providing personalized interactions but also offers flexibility for developers to 

customize responses based on specific project requirements. 

Every explanation and comparison is associated to a specific intent.In this way it is possible 

to accurately identify what the users are asking for and provide it to them. In particular we 

have: 

Intent Description Triggering messages  

Introduction Provides some general information about 

the bot. 

hi, hello, who are you, what do you do, etc. 

Suggestion Initialize the suggestion process, 

providing the user with a suitable recipe  

Suggest something to eat 

Change suggestion It can be called whenever the user does 

not find suitable the first suggestion (up 

to two times) 

give me another one, I don't like this, do you 

have another one?, can you change it? 

Stop suggestion Ends the change suggestion process *automatically triggered* 

Specific suggestion Provides the users with a recipe with an 

ingredient they request 

I want a *ingredient*-based recipe, 

Can you give me a recipe with *ingredient*? 

Expl age Explanation about the healthiness and is it adequate for my age? 
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appropriateness of the recipe based on the 

age group the user belongs to 

Expl cost Explanation about the appropriateness of 

the recipe based on its cost  

how much does it cost? 

Expl goal Explanation about the healthiness and 

appropriateness of the recipe based on the 

user goals 

is it in line with my goals? 

Expl health-benefits Explanation concerning the possible 

benefits of the recipe 

does it have some healthy benefits? 

Expl health-risks  Explanation concerning the possible risks 

of the recipe 

what are its health risks? 

Expl lifestyle Explanation about the appropriateness of 

the recipe with respect to the user’s 

lifestyle 

is it good for my lifestyle? 

Expl macros Explanation about the healthiness of the 

recipe with respect to an ideal macros 

distribution 

are its macros good? 

Expl popularity Explanation about the popularity of the 

recipe with respect to the ratings on 

giallozafferano.it 

how popular is it? 

Expl restriction Explanation about the appropriateness of 

the recipe with respect to the user’s 

restrictions 

is it ok for my restrictions? 

Expl skill Explanation about the appropriateness of 

the recipe with respect to the user’s 

cooking skills 

is it easy to cook? 

Expl seasonality Explanation about the level of seasonality 

of the recipe ingredients 

is it seasonal? 

Expl sustainability Explanation about the level of 

sustainability of the recipe ingredients 

is it sustainable? 

Expl time Explanation about the appropriateness of 

the recipe with respect to the user 

available time 

do I have enough time? 

Expl meal Plain description of the recipe what are its characteristics? 

Expl meal check Provides a comparison between various 

nutrients and 40% of their respective 

what are it nutritional values? 
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daily reference intake 

Comp age Comparison between two recipes taking 

into account the users’ age 

compare them according to my age 

Comp cost Comparison between two recipes taking 

into account the users’ cost restriction 

compare them according to their costs 

Comp goal Comparison between two recipes taking 

into account the users’ goals 

compare them according to my goals 

Comp health-benefits Comparison between two recipes taking 

into account the health-benefits of the 

recipes 

compare them according to their health 

benefits 

Comp health-risks  Comparison between two recipes taking 

into account the health-risks of the recipes 

compare them according to their health risks 

Comp lifestyle Comparison between two recipes taking 

into account the users’ lifestyle 

compare them according to my lifestyle 

Comp macros Comparison between two recipes taking 

into account the macros distributions of 

the two recipes 

compare them according to their macros 

Comp popularity Comparison between two recipes taking 

into account the recipes’ ratings 

compare them according to their 

popularity\rating 

Comp restriction Comparison between two recipes taking 

into account the users’ restriction 

compare them according to my restrictions 

Comp skill Comparison between two recipes taking 

into account the users’ cooking skill 

compare them according to the skill required 

to cook them 

Comp seasonality Comparison between two recipes taking 

into account the seasonality of the 

recipes’ ingredients 

compare them according to their seasonality 

Comp sustainability Comparison between two recipes taking 

into account the sustainability of the 

recipes’ ingredients 

compare them according to their 

sustainability 

Comp time Comparison between two recipes taking 

into account the users’ time restrictions 

compare them according to cooking time 

Comp meal Plain descriptions of the two recipes compare them according to their nutritional 

values 

Compl meal check Comparison between recipes taking into 

account various nutrients and 40% of 

their respective daily reference intake 

compare them according to their nutritional 

values 
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Figure 35: Intent-function list 



61 
 

3.2.6. Usage examples 
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4. Experimental Evaluation 

The experiment for this thesis is structured with the same framework as the bot, but a 

simplified version is implemented. Most intents have been removed, leaving only the default 

fallback and welcome intents along with the introduction. 

Additionally, a new commandHandler "/get_suggestions" has been added, which will initiate 

the actual experiment process. 

Our research question is: “Can we influence our users' perception of recipes to encourage 

healthier eating habits by providing them with more information about the recommended 

recipes?” 

To find an answer to this question, the user will follow the following process during the 

experiment: 

1. To access the bot, users can click on the following link: https://t.me/food_recsys_bot. 

This will take them directly to the bot on Telegram, where they will receive a 

welcome message. 

 

2. After entering the bot, users can create their user profile using the command /create. A 

brief questionnaire consisting of 10 mandatory questions will guide them in providing 

their basic information. 

If users wish to make changes to their profile, they can use the command /modify after 

completing the mandatory questions. By typing the name of the attribute they wish to 

modify, the bot will display the available options. Alternatively, they can type "none" 

if no changes are desired. 

 

3. Healthiness assessment: Users will receive recommendations for healthy recipes and 

will be asked to express their opinion on the healthiness of each recipe. The bot will 

then provide additional explanations, and users will need to reconsider their opinion 

based on the information provided. 
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4. Sustainability assessment: The process focuses on the sustainability of recipes rather 

than healthiness, following similar steps as described above. 

 

 

5. Upon completing the recommendations process, the bot will display the user's unique 

ID and provide a link to the final questionnaire. Users are encouraged to participate in 

the questionnaire to share their opinions and contribute to the research. 

 

4.1. Amazon Web Services 

The experiment is currently available and hosted on an AWS 

machine.  

Amazon Web Services (AWS)28 is a comprehensive cloud 

computing platform provided by Amazon, offering a wide 

range of services that enable businesses and individuals to 

build, deploy, and manage applications and infrastructure in the cloud.  

In particular, AWS offers a vast array of cloud services across categories such as compute, 

storage, databases, networking, machine learning, artificial intelligence, analytics, security, 

and more. Some popular services include Amazon EC2 (Elastic Compute Cloud) for virtual 

servers, Amazon S3 (Simple Storage Service) for object storage, Amazon RDS (Relational 

Database Service) for managed databases. 

Our machine on Amazon Web Services (AWS) is an Amazon EC2 instance, specifically 

using the t2.micro instance type and running the Ubuntu operating system with 1GB of RAM 

and 30GB of storage.  

An Amazon EC2 (Elastic Compute Cloud)29 instance is a virtual server provided by AWS 

that allows users to run applications and services in the cloud.  

EC2 instances are highly customizable, allowing users to choose specifications such as CPU, 

memory, storage, and networking capabilities based on their workload requirements. 

                                                
28 https://aws.amazon.com/ 
29 https://aws.amazon.com/it/ec2/ 

Figure 36: Amazon Web Services logo 
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The t2.micro instance type is one of the many instance types available on AWS and it is 

designed for general-purpose computing and is suitable for a wide range of applications, 

including development and testing environments, small-scale applications, and low-traffic 

websites. 

 

4.2. The Experiment 

In addition to the questions previously addressed, this experiment will also collect data on 

users' levels of knowledge and interest regarding the healthiness and sustainability of the 

recipes. These metrics will serve as a basis for comparison in interpreting the results. The 

experiment is structured as follows: 

After obtaining mandatory user information and completing profile creation, the main 

experiment commences.  Users will initially receive 6 suggestions, comprising a first course, 

a second course, and a dessert in both the healthiness and sustainability categories. 

This process was implemented through a new conversationHandler that takes care of the 

entire flow, specifically: 

The conversation handler defines a structured flow for a chatbot or conversational interface 

related to suggesting and evaluating recipes based on their healthiness and sustainability: 

 entry points: The conversation starts when the user triggers the "get_suggestions" 

command, which is handled by the "healthiness_initialiation" function. 

 states: Defines different states or stages of the conversation, each corresponding to a 

particular point in the interaction flow. Here are the states and their corresponding 

message handlers: 

o PRE_FIRST_COURSE_HEALTINESS: User is expected to provide 

unconditioned input for the first course's healthiness. 

o POST_FIRST_COURSE_HEALTINESS: After receiving the user's input for 

the first course's healthiness, the conversation moves to the explanation for the 

first course and now expects a conditioned input from the user. 



66 
 

o PRE_SECOND_COURSE_HEALTINESS: User provides unconditioned input 

for the second course's healthiness. 

o POST_SECOND_COURSE_HEALTINESS: After receiving the user's input 

for the second course's healthiness, the conversation moves to the explanation 

for the second course and now expects a conditioned input from the user. 

o PRE_DESSERT_HEALTINESS: User provides unconditioned input for the 

dessert's healthiness. 

o POST_DESSERT_HEALTINESS: After receiving the dessert's healthiness 

input the conversation moves to the explanation for the second course and now 

expects a conditioned input from the user. 

o PRE_FIRST_COURSE_SUSTAINABILITY: User provides unconditioned 

input for the first course's sustainability. 

o POST_FIRST_COURSE_SUSTAINABILITY: After the first course's 

sustainability input, the conversation moves to the explanation for the first 

course and now expects a conditioned input from the user. 

o PRE_SECOND_COURSE_SUSTAINABILITY: User provides unconditioned 

input for the second course's sustainability. 

o POST_SECOND_COURSE_SUSTAINABILITY: After the second course's 

sustainability input, the conversation moves to the explanation for the first 

course and now expects a conditioned input from the user. 

o PRE_DESSERT_SUSTAINABILITY: User provides unconditioned input for 

the dessert's sustainability. 

o POST_DESSERT_SUSTAINABILITY: After receiving the dessert's 

sustainability input, the conversation reaches the end of the experiment. 

 fallbacks: In case a user input doesn't match any of the expected states or handlers the 

users will be prompted with an error message. 

Hence, upon receiving each suggestion, users are prompted to rate its 

healthiness/sustainability on a scale from very unhealthy/unsustainable to very 

healthy/sustainable. Subsequently, users are presented with an explanation elaborating on the 

recipe, providing additional information. 
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After reviewing the explanation, users are asked to rate the recipe again, taking into account 

the new information. This process is repeated for all 6 suggestions (3 assessing healthiness, 3 

sustainability). 

Regarding healthiness, the bot will randomly provide one of 3 types of explanations:  

 Expl Macros, 

 Expl Goals, 

 Expl Meal Check.  

In the sustainability section, the bot will either present Expl Sustainability or a new 

explanation listing only the recipe ingredients. 

 

Figure 37: ConversationalHandler for the experiment 

The objective is to evaluate whether the bot's explanations influence users' perceptions of the 

recipes. All user input and selections are recorded in a CSV file for later analysis. 

Upon completion of the process, users receive their unique Telegram ID and a link to a 

Google Form hosting the final questionnaire, structured as follows30: 

Question construct answers 

1. Please choose your education 

level: 

Demographic  Primary School 

 High School 

 Bachelor's degree 

 Master's degree 

                                                
30  Roberto Polillo «Facile da usare, una moderna introduzione all’ingegneria dell’usabilità», 2010. 
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 Ph.D. or more 

2. How would you rate yourself 

as a computer user? 

Demographic  No experience 

 Beginner 

 Average 

 Advanced 

3. Have you ever used a 

recommender system before? 

Demographic  Yes 

 No 

 Maybe 

4. How frequently have you used 

conversational agents and digital 

assistants? 

Demographic  Never 

 Very infrequently (a few times 

overall) 

 Infrequently (a few times a 

month) 

 Moderately (1-3 times a week) 

 Regularly (Daily) 

5. The items recommended to 

me match my interests: 

Recommendation 

accuracy 

 Strongly disagree 

 Disagree 

 Neutral 

 Agree 

 Strongly Agree 

6. This recommender system 

helped me discover new 

products: 

Novelty  Strongly disagree 

 Disagree 

 Neutral 

 Agree 

 Strongly Agree 

7. This recommender system 

provided me with unexpected 

but useful suggestions: 

Serendipity  Strongly disagree 

 Disagree 

 Neutral 

 Agree 

 Strongly Agree 

8. The information provided for 

the recommended items is 

sufficient for me to make a 

decision: 

Interface 

sufficiency 

 Strongly disagree 

 Disagree 

 Neutral 

 Agree 

 Strongly Agree 

10. The recommender can be 

trusted 

Trust and 

reliability 

 Strongly disagree 

 Disagree 

 Neutral 
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 Agree 

 Strongly Agree 

11. Overall, I am satisfied with 

the recommender: 

Overall 

satisfaction 

 Strongly disagree 

 Disagree 

 Neutral 

 Agree 

 Strongly Agree 

12. After reading the 

explanations about the 

healthiness and sustainability of 

the recipe, I am more informed 

about these aspects: 

Information 

Clarity and 

Effectiveness 

 Strongly disagree 

 Disagree 

 Neutral 

 Agree 

 Strongly Agree 

13. Do you think the 

explanations provided by the 

system were clear and 

understandable regarding the 

healthiness and sustainability of 

the recipe? 

Explanation 

Clarity 

 Yes, very clear and 

understandable 

 Yes, moderately clear and 

understandable 

 Neutral 

 No, not very clear and 

understandable 

 No, not clear and understandable 

at all 

14. After receiving the 

explanations, would you change 

your eating or consumption 

habits to promote healthiness 

and sustainability? 

Behavioural 

Intentions 

 Yes, I would certainly give it a 

try 

 I am open to making changes 

following the explanations 

 I am not sure 

 I might not make any changes 

 No, I don't think so 

15. After receiving the 

explanations, do you believe that 

the recipes recommended by the 

system have a different 

healthiness and sustainability 

value than you initially thought? 

Perceived Impact 

of Information 

 Yes, I am convinced 

 I think there might be some 

differences 

 I don't know 

 I am not convinced by the 

differences 

 No, my opinion remains the same 
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5. Results 

In this paragraph, all the data collected during the experimentation phase will be analyzed, 

particularly the responses provided by users in the final questionnaire and other relevant data 

derived from the actual usage of the bot. The final questionnaire was designed to assess users' 

experiences in interacting with the bot, encompassing aspects such as ease of use, overall 

satisfaction, but more importantly explanation clarity and perceived impact of information. 

Hence, in addition to the quantitative and demographic responses gathered through the 

questionnaire, qualitative feedback provided by users has also been examined to gain a 

deeper understanding of their experiences and perceptions. 

Furthermore, bot usage data, including the users’ profiles and opinions, have been considered 

to evaluate the effectiveness and efficiency of the implemented system.  

 

5.1 Questionnaire 

The questionnaire was submitted to 32 users and the initial questions provide insight into 

their demographics.
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It's notable that while our users demonstrate proficiency in computer usage, only about half 

of them can accurately recognize a recommender system. This observation is intriguing given 

the widespread utilization of recommender systems like those found in Amazon or Netflix; a 

significant portion of users seem unaware of their presence.
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Further examination reveals a diverse user base, encompassing individuals who are already 

familiar with conversational agents as well as those who have never interacted with them. 

 

 

Additionally, we observe a strong alignment between the recommendations and the users' 

interests.
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Moreover, the recommender system appears to facilitate users in discovering new products: 

 

 

Similar percentages are evident when considering serendipitous discoveries.
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We now begin to discern the impact of explanations on our users:

 

 

We have also gained a good level of trust: 
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In facts we see that the recommender pleased the vast majority of them with over 90% of the 

users that are satisfied with the recommender. 

 

Let’s now focus on the most interesting questions for this experiment.  

In particular, we can observe how the explanations about the healthiness and sustainability 

provided some new information to the users, making them more informed. Only a very small 

portion of the users (less than 10%) disagree with the statement, but we have to keep in mind 

that there are people that are also well informed about such aspects of recipes. 
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The bot also appears to deliver clear and understandable explanations, as evidenced here, 

almost 90% of the user agreed: 

 

Most importantly, however, we can also see how the bot’s explanations can not only change 

the perception of the users regarding a given recipe but also influence their behaviours: 
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The significance of the final question cannot be overstated, as it serves as a pivotal point 

where users may question their existing knowledge and be prompted to construct a new 

understanding. Remarkably, over 90% of users responded affirmatively, indicating their 

acknowledgment of the disparities between their initial perceptions of healthiness and 

sustainability versus the insights gained through the bot's explanations. 

 

5.2. Experimental Data 

In our comprehensive dataset sourced from giallozafferano.it, we've meticulously collected 

details on 4615 recipes, covering a wide array of attributes for each entry, including URL, 

title, cost, category, imageURL, description, prepTime, cookTime, totalTime, yield, dietary 

specifications (such as vegetarian, lactose-free, gluten-free), nutritional information (such as 

calories, carbohydrates, sugars, proteins, fats, saturated fats, fibers, cholesterol, sodium), 

ingredient measurements, actual ingredients, cooking instructions, and even ratings. 

To establish a reliable benchmark (the so-called Ground Truth) for comparing user responses, 

we've devised a system to evaluate both the healthiness and sustainability of each 
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recommended recipe. Beginning with healthiness, we adhere to the Food Standards Agency 

(FSA)31 Guidelines, specifically: 

We start by taking the URL of a specific recipe as input, which serves as a reference point. 

Utilizing this URL, we filter our recipe DataFrame to extract essential nutrient values such as 

fat, saturated fat, sugars, and sodium from the corresponding row, storing them in a 

dictionary for streamlined computation. To conform to FSA standards, we normalize these 

nutrient values by dividing each by 1.2, adjusting from the typical 100 grams to an 80% 

portion size. The healthiness score, ranging from 4 to 12, is then calculated based on 

predefined thresholds provided by the FSA, with increments determined by how each 

nutrient value compares to these thresholds. This score enables us to categorize recipes into 

five distinct healthiness levels, ranging from "Very Healthy" to "Unhealthy", offering users 

clear insights into the nutritional quality of each dish. 

Turning our attention to sustainability, our approach centers on evaluating recipes' 

environmental impact, specifically concerning their carbon and water footprints. The process 

commences by dissecting the ingredients of a given recipe and cross-referencing each 

ingredient with the data-processing process sourced from the library HeASe32. Leveraging 

the dataset from SU-EATABLE LIFE33, we obtain information regarding the environmental 

implications of various ingredients. Through this dataset, we discern the carbon and water 

footprints associated with each ingredient. Subsequently, we compute the sustainability score 

utilizing HeASe's established methodology, incorporating a logarithmic normalization step to 

ensure consistency and reliability across diverse recipes. By computing scores for all recipes, 

spanning from 0 to 12, and distributing them across percentiles, we assign five labels 

denoting sustainability levels, ranging from "Very Sustainable" to "Unsustainable".  

Collecting user profiles, responses, and opinions, along with generating our Ground Truth, 

provides us with valuable insights into the usage of the bot: 

                                                
31 https://www.food.gov.uk/ 
32 https://github.com/GiovTemp/SustainaMeal_Case_Study/tree/main 
33 Petersson, Tashina; Secondi, Luca; Magnani, Andrea; Antonelli, Marta; Dembska, Katarzyna; Valentini, 
Riccardo; et al. (2021). SU-EATABLE LIFE: a comprehensive database of carbon and water footprints of food 
commodities. figshare. Dataset. https://doi.org/10.6084/m9.figshare.13271111.v2 
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As we can see from the tables below, we can observe that the explanation of 'health-benefits' 

enhances the perception of healthiness across all types of dishes, while the 'goals' explanation 

improves the perception of healthiness specifically for first courses.  

Regarding sustainability, the proposed explanations are particularly effective in enhancing 

the perception of second courses. 

Average error PRE explanation = |PRE_opinion_value – Ground_Truth_value| / count 

Average error POST explanation = |POST_opinion_value – Ground_Truth_value| / count 

 

Overall per dish, regardless of type of explanation: 

Topic Dish Average error PRE 

explanation 

Average error POST 

explanation 

Healthiness      First course 0.029            0.118             

Healthiness      Second course 0.353            0.588             

Healthiness      Dessert 1.000            1.382             

Sustainability   First course 1.059            1.206             

Sustainability   Second course 0.941            0.706             

Sustainability   Dessert 1.971            2.059             

 

Overall per explanation, regardless of dish:  

Topic Type of explanation Average error 

PRE explanation 

Average error 

POST explanation 

Healthiness      Goal 0.222 0,444 

Healthiness      Health-benefit 0,521 0,478 

Healthiness      Health-risk 0,458 0,875 

Healthiness      Macros 0,409 0,863 

Sustainability   Ingredients 1,098 1,235 

Sustainability   Sustainability 1,500 1,461 
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Now we combine Dishes and Explanations:  

Topic Dish - Explanation Average error 

PRE explanation 

Average error 

POST explanation 

Healthiness      First course - Goal 0,083 0 

Healthiness      First course - H-benefit 0,222 0,222 

Healthiness      First course - H-risk 0 0,714 

Healthiness      First course - Macros 0,285 0,428 

Healthiness      Second course - Goal       0,076 0,307 

Healthiness      Second course - H-benefit 0,666 0,500 

Healthiness      Second course - H-risk 0,545 0,545 

Healthiness      Second course - Macros     1,500 2,166 

Healthiness      Dessert - Goal             0,800 1,200 

Healthiness      Dessert - H-benefit 1,500 1,300 

Healthiness      Dessert - H-risk  0,857 1,428 

Healthiness      Dessert - Macros  0,555 1,333 

Sustainability   First course - Ingredients 1,266 1,400 

Sustainability   First course - Sustainability 1.000 1,176 

Sustainability   Second course - Ingredients 0,875 0,750 

Sustainability   Second course - Sustainability 1,041 0,750 

Sustainability   Dessert - Ingredients 1,823 1,882 

Sustainability   Dessert - Sustainability 2,117 2,235 
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Hence, we actually gained a decrement in the average errors of: 

Topic Dish Decrement % on  

Average error PRE/POST explanation 

Sustainability   Second Course -25.00 % 

 

Topic Type of explanation Decrement % on  

Average error PRE/POST explanation 

Healthiness      Health-benefit -8.24 % 

Sustainability   Sustainability -2.60 % 

 

Topic Dish - Explanation Decrement % on  

Average error PRE/POST explanation 

Healthiness      First course - Goal -8.30 % 

Healthiness      Second course - H-benefit -24.92 % 

Healthiness      Dessert - H-benefit -13.33 % 

Sustainability   Second course - Ingredients -14.29 % 

Sustainability   Second course - Sustainability -28.00 % 
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6. Conclusions 

The conclusions drawn from this study reveal promising implications for promoting healthier 

dietary choices among users. The research embarked on exploring the effectiveness of the 

chatbot in influencing user behaviour towards embracing healthier eating habits in an 

environment inundated with dietary choices. Specifically, it started from the research 

question: “Can we influence our users' perception of recipes to encourage healthier eating 

habits by providing them with more information about the recommended recipes?”. The 

study demonstrates that it is possible to change user perception and also behaviours if they’re 

prompted with the right information. First and foremost, the study underscores the positive 

reception of the recommender system within the chatbot interface. Despite a heterogeneous 

user group comprising individuals with varying levels of familiarity with conversational 

agents, the overwhelming majority expressed satisfaction with the recommendations 

provided. This high level of user satisfaction, exceeding 90%, suggests that the chatbot 

effectively caters to the diverse needs and preferences of its users, regardless of their prior 

experience with similar technologies. Such a favourable response underscores the potential 

of integrating technology-driven solutions, such as chatbots, in promoting healthy dietary 

choices. 

Furthermore, the study sheds light on the transformative potential of the chatbot's 

explanations in enhancing user knowledge and awareness regarding the healthiness and 

sustainability of food choices. By providing clear and understandable explanations, the 

chatbot serves as an informative resource, enriching users' understanding of nutritional 

concepts and guiding them towards informed decision-making. The significant proportion of 

users who acknowledged the value of these explanations, coupled with the minimal dissent, 

underscores the efficacy of the chatbot in imparting new information and fostering a deeper 

appreciation for healthy eating principles. 

Most notably, the study highlights the pivotal role of the chatbot's explanations in influencing 

user perceptions and behaviours towards food consumption. The bot's explanations not only 

challenge users' preconceived notions but also prompt them to reconsider their dietary 

choices and habits. The overwhelmingly affirmative response from users, also here exceeding 

90%, indicates a paradigm shift in their understanding of healthiness and sustainability, 
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guided by the insights gleaned from the chatbot's explanations. This suggests that the chatbot 

can serve as a catalyst for behaviour change, empowering users to make more conscious and 

informed decisions about their food intake. 

Ultimately, the tables displaying the average errors with respect to the ground truth reveal 

notable enhancements across multiple instances, attributable to the explanatory capabilities 

of the bot. 

In conclusion, the study underscores the potential of integrating a healthy food recommender 

system within a chatbot interface as a persuasive tool for promoting healthier dietary choices. 

The high level of user satisfaction, coupled with the transformative impact of the chatbot's 

explanations on knowledge, perceptions, and behaviours, signifies its effectiveness in 

fostering positive dietary changes among users.  
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Future Works 

Future works in the context of this study could focus on: 

 integrating wearable technology; 

 leveraging behavioural nudges and gamification strategies ; 

 enhancing multimodal communication within chatbot interfaces 

Integration with wearable devices offers the potential for real-time monitoring of users' 

dietary behaviors and physical activity levels, enabling personalized feedback and support 

throughout the day. By analyzing data from activity trackers and biometric sensors, the bot 

could deliver timely reminders, goal-setting prompts, and rewards tailored to individual 

users' needs and preferences.  

Furthermore, incorporating behavioural nudges and gamification elements, such as goal-

setting, progress tracking, and rewards systems, can incentivize and motivate users to adhere 

to healthier eating habits. By transforming dietary goals into achievable milestones and 

turning healthy eating into an engaging and rewarding experience, the bot can foster 

sustained behaviour change over time. 

Additionally, introducing multimodal communication modalities, such as voice interaction, 

visual cues, and interactive media, can improve user engagement and comprehension of 

dietary recommendations. Multimodal communication can enhance the effectiveness and 

accessibility of chatbot interventions for promoting healthier dietary choices among users.  

Integrating these approaches could change how individuals make informed and sustainable 

dietary decision. 
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