

COMPUTER SCIENCE DEPARTMENT

MASTER’S DEGREE IN COMPUTER SCIENCE

THESIS IN

SEMANTICS IN INTELLIGENT INFORMATION ACCESS

“A Personal Assistant for Healthy and Sustainable Food

Recommendations”

Thesis Supervisor:

Prof. Cataldo MUSTO

Candidate:

Giovanni Federico POLI

ACADEMIC YEAR

2022/2023

2

3

Table of Contents

1. Introduction .. 4

1.1. The context ... 4

1.2. The aim .. 5

1.3. Thesis structure ... 6

2. Fundamental concepts .. 7

2.1. The Artificial Intelligence ... 7

2.2. Recommender systems ... 15

2.3. Conversational agents & Chatbots ... 22

2.4. State of the art ... 28

3. @food_recsys_bot ... 31

3.1. The Overview ... 31

3.2. The implementation ... 35

3.2.1 The recommendation system.. 35

3.2.2 The Explanation system .. 37

3.2.3 The Bot ... 42

3.2.4. DialogFlow .. 55

3.2.5. Explanations & Comparisons .. 56

3.2.6. Usage examples .. 61

4. Experimental Evaluation... 63

4.1. Amazon Web Services .. 64

4.2. The Experiment ... 65

5. Results ... 70

5.1 Questionnaire ... 70

5.2. Experimental Data ... 77

6. Conclusions .. 82

Future Works... 84

7. Bibliography ... 85

8. Acknowledgements .. 87

4

1. Introduction

1.1. The context

We inhabit a hyperconnected world, where an increasing number of individuals have access

to the Web, enabling us to share and access information, opinions, and content of various

kinds. As early as 2017, half of the global population was online1, and by 2020 – a year

marked by the COVID-19 pandemic that propelled the world online – every minute saw

52,083 users connecting on Microsoft Teams, while Netflix provided 404,444 hours of video

streaming to its users.

Figure 1: A minute on the internet, Statista.com

Our lives are increasingly intertwined with digital systems that facilitate various aspects of

our daily routines and among these, recommender systems have emerged as indispensable

tools, aiding us in navigating the vast expanses of information and choices available online.

1 https://www.statista.com/chart/17518/data-created-in-an-internet-minute/

5

A recommender system, at its core, is an intelligent information filtering mechanism that

predicts user preferences and provides personalized suggestions, thereby assisting users in

making informed decisions. This technology has found widespread application in e-

commerce platforms, content streaming services, and social media platforms, shaping our

online experiences in profound ways.

Concurrently, the proliferation of conversational agents, commonly known as chatbots, has

revolutionized the dynamics of human-computer interaction. Chatbots leverage natural

language processing (NLP) techniques to engage in dialogue with users, offering assistance,

answering queries, and executing tasks autonomously.

Telegram2, a popular instant messaging platform, has emerged as a fertile ground for the

integration of such chatbots, presenting a great tool for users to interact with automated

systems.

Amidst the rapid evolution of both recommender systems and chatbots, the fusion of these

technologies offers an compelling avenue for investigation and despite notable progress in

both domains, a crucial aspect yet to be comprehensively explored is the persuasiveness of

this kind of tools.

1.2. The aim

With a focus on promoting healthy dietary choices, the aim of this thesis is to explore the

persuasiveness of a healthy food recommender system integrated into a chatbot.

In an environment saturated with dietary choices, the recommender system within the chatbot

interface is tasked with not only suggesting nutritious recipes but also justifying these

suggestions in a compelling manner. Recognizing the limitations inherent in promoting

universally appealing yet not-so-healthy dishes, e.g. carbonara, the system is designed to

prompt users with balanced recommendations, based on the user characteristics, while

providing persuasive rationales behind each suggestion.

2 https://telegram.org/

6

Through this approach, the thesis seeks to investigate the effectiveness of the chatbot in

influencing user behaviour towards embracing healthier eating habits.

1.3. Thesis structure

The structure of this thesis follows a logical progression aimed at exploring the

persuasiveness of the healthy food recommender system integrated into a Telegram chatbot.

Beginning with the Introduction, the context of the research is established.

This sets the stage for delineating the aim of the thesis, which is to investigate the

persuasiveness of the chatbot-recommender system in influencing user behaviour towards

healthier eating habits.

Following this, the Fundamental Concepts section provides a grounding in essential

terminology, including recommender systems, conversational agents, and chatbots, laying the

foundation for understanding the subsequent discussions.

The State of the Art chapter surveys existing literature and advancements in the field,

providing a comprehensive overview of relevant research and technological developments.

Moving into the core of the thesis, the @food_recsys_bot section delves into the specifics of

the integrated system, exploring the architecture, technologies utilized, and the rationale

behind design choices.

The subsequent Case Study chapter outlines the experimental methodology employed to

evaluate the persuasiveness of the chatbot's recommendations, detailing the experiment setup

and the metrics utilized for assessment.

The Results chapter presents the findings of the study, analyzing data collected from the

experiment and drawing insights into the effectiveness of the chatbot in changing the user

perspective towards healthy and sustainable recipes.

Finally, the Conclusions section summarizes key findings, discusses implications for future

research, and suggests potential avenues for further exploration.

7

2. Fundamental concepts

2.1. The Artificial Intelligence

Artificial Intelligence (AI) represents a transformative field of study and innovation that

seeks to emulate or replicate human-like intelligence in machines and systems. The

overarching goals of AI are vast and multifaceted, including the reproduction of human

cognitive functions such as learning, reasoning, perception, and decision-making.

AI systems are designed to perform tasks that traditionally require human intelligence,

ranging from basic pattern recognition to complex problem-solving and decision-making

processes.

One of the fundamental techniques employed in AI is machine learning, which enables

systems to learn from data and improve their performance over time without explicit

programming.

Deep learning, a subset of machine learning, involves the use of artificial neural networks

inspired by the structure and function of the human brain. These networks are capable of

processing vast amounts of data and extracting intricate patterns and features, making them

well-suited for tasks such as image recognition, natural language processing, and speech

recognition.

Logical reasoning is another key aspect of AI, involving the use of formal rules and logical

principles to derive conclusions and make inferences. This technique is often employed in

areas such as knowledge representation, expert systems, and automated reasoning.

The applications of AI span across various domains, showcasing its versatility and impact on

modern society.

 In the field of medicine, AI is used for diagnostic imaging, drug discovery,

personalized medicine, and patient management.

 Industrial automation leverages AI technologies for process optimization, predictive

maintenance, and quality control.

 Data analysis and analytics benefit from AI-powered algorithms for pattern

recognition, anomaly detection, and predictive modelling.

8

 Also autonomous vehicles represent a prominent application of AI, where machine

learning and computer vision algorithms enable vehicles to perceive and navigate their

environment independently.

 Recommendation systems, commonly seen in e-commerce platforms and streaming

services, utilize AI to personalize content and make tailored suggestions to users based

on their preferences and behaviour.

 Virtual assistants like Siri3, Alexa4, and Google Assistant5 exemplify AI applications

in virtual assistance, employing natural language processing and machine learning

techniques to understand and respond to user queries and commands6.

 Robotics is another domain where AI plays a crucial role, enabling robots to perform

complex tasks in industrial settings, healthcare, exploration, and entertainment.

Hence, it is safe to say that artificial Intelligence (AI) has permeated virtually every aspect of

modern life, showcasing its ubiquitous presence and impact across diverse domains. From

machine learning and deep learning algorithms powering advanced pattern recognition and

decision-making systems to logical reasoning techniques facilitating knowledge

representation and automated reasoning, AI technologies have become integral to numerous

applications.

Figure 2: Machine Learning process

3 https://www.apple.com/siri/
4 https://www.alexa.com/
5 https://assistant.google.com/
6 V. Kumar, A. Dixit, R. R. G. Javalgi e M. Dass, «Research framework, strategies, and applications of
intelligent agent technologies (IATs) in marketing,» Journal of the Academy of Marketing Science, vol. 44, n. 1,
pp. 24-45, 2016.

9

The phases of AI - namely learning, reasoning, and action - collectively represent the

iterative and dynamic nature of AI systems as they interact with data and respond to various

stimuli.

1. Learning:

The learning phase is fundamental to AI systems as it involves acquiring knowledge,

skills, and patterns from data or experience. Machine learning algorithms, for

instance, learn from labelled or unlabelled datasets to identify patterns and

relationships, enabling the system to recognize and classify new data points. Deep

learning models take this a step further by learning hierarchical representations of

data, which are essential for tasks like image recognition and natural language

processing. Reinforcement learning algorithms learn through trial and error, receiving

feedback from the environment to refine their decision-making processes.

So, the learning phase grants AI systems the ability to recognize patterns, make

predictions, and adapt to new information.

2. Reasoning:

The reasoning phase includes the processes of inference, decision-making, and

problem-solving based on the knowledge acquired during the learning phase. Logical

reasoning techniques, such as deductive and inductive reasoning, allow AI systems to

draw conclusions and make inferences based on logical rules and patterns.

Probabilistic reasoning techniques, such as Bayesian inference, enable systems to

assess uncertainties and make decisions based on probabilities. Additionally, symbolic

reasoning techniques, including knowledge representation and rule-based systems,

facilitate complex problem-solving and decision-making in domains like expert

systems and automated reasoning. Reasoning enables AI systems to analyze

information, derive insights, and make informed decisions or recommendations.

3. Action:

The action phase involves the execution of decisions or tasks derived from the

learning and reasoning phases, resulting in tangible outcomes or responses. This phase

is where AI systems interact with the external environment or users, applying their

10

knowledge and reasoning capabilities to generate actions or responses.

In autonomous systems like self-driving cars, the action phase involves navigation,

control, and decision-making based on real-time sensory input and learned models.

In conversational AI systems, the action phase entails generating appropriate

responses or actions based on user inputs and the system's understanding of the

context.

Overall, the action phase bridges the gap between AI systems' internal processes and

their external interactions, manifesting in behaviours, decisions, or outputs that impact

the surrounding environment.

In AI, the actors (“who act”) are the so-called intelligent agents. These agents, acting as the

primary actors in AI, interact with their environment through a process of perception and

action. Equipped with sensors, they gather information from their surroundings, while

actuators enable them to respond and act upon this data, whether in virtual or physical

domains.

What distinguishes intelligent agents is their autonomy and goal-driven nature.

They are designed to operate independently, pursuing specific objectives or tasks without

constant human intervention. This autonomy is powered by a sophisticated process that

involves collecting and analyzing data using AI algorithms, leading to informed decision-

making and action.

The complexity of intelligent agents varies widely, from basic rule-based systems to

advanced machine learning or reinforcement learning-based agents. While some agents rely

on predefined rules and responses (reactive agents), others can learn from experience and

improve their performance over time, Through continuous learning and feedback loops, they

refine their capabilities, leading to improved performance and effectiveness over time. This

adaptability and learning ability enable them to navigate complex scenarios and make

informed decisions in dynamic environments.

In practical terms, intelligent agents find application across a range of domains and contexts.

For instance, chatbots leverage natural language processing to provide user assistance, while

autonomous driving systems use sensor data to make real-time decisions for safe navigation

11

on roads. These applications showcase the versatility and utility of intelligent agents in

modern AI ecosystems.

Figure 3: Intelligent agents actions schema

The behaviour of intelligent agents is influenced by a multitude of factors, both internal and

external.

 Internally, these agents rely on accurate perception, defined goals, knowledge

acquisition, reasoning processes, and decision-making mechanisms.

 Externally, factors such as feedback from the environment, user interactions,

constraints, and rules shape their actions and responses.

More specifically, an agent's actions are influenced by a combination of internal and external

factors that determine its behaviour and decisions.

Firstly, environmental perception plays a fundamental role: through its sensors, which can be

cameras, microphones, motion sensors, and other devices, the Agent is able to gather

information from the surrounding environment. This information, obtained through

environmental perception, directly influences the decisions and actions taken by the Agent.

12

Another determining factor is the agent's goals and evaluation function. Each agent has

specific goals to achieve and an evaluation function that determines how to assess the various

possible actions in relation to these goals. In this way, the agent seeks to maximize its

evaluation function by choosing actions that are expected to lead to the desired results.

Knowledge and information are further elements that influence the agent's behaviour.

agents can have a predefined knowledge base or acquire knowledge from experience or

learning. This knowledge, which may include rules, models, strategies, historical data, and

more, impacts the actions taken by the agent.

Reasoning and decision-making processes are also integral to an agent's functioning. By

using reasoning algorithms and decision-making processes, the agent can process the

available information and make decisions based on that information. This can involve

weighing different options, predicting the outcomes of actions, or applying optimization

strategies.

Interactions and feedback are other important aspects that influence the agent's behaviour

because agents can interact with the surrounding environment, other agents, or users,

receiving feedback that will influence their future actions. For instance, an agent learning

through reinforcement may receive rewards or penalties based on the actions taken, thus

influencing its future behaviour.

Finally, constraints and rules may limit the actions that the agent can take. These constraints

may be imposed by technical, ethical, legal, or security factors and influence the agent's

decisions and actions.

Below are some of the main types of artificial intelligence (AI) systems that have evolved

over time, taking into account their hybrid nature and combination of multiple techniques to

address complex tasks. 7

 Specialized artificial intelligence systems serve as a first example, focusing on

specific tasks or narrow domains. These systems are optimized for a single activity

and use dedicated algorithms to solve particular problems, as demonstrated by

7 David L.Poole, Alan K. Mackworth «Artificial Intelligence: Foundations of Computational Agents».

13

DeepMind's AlphaGo8, specialized in the game of Go and known for defeating world

Go champion Lee Sedol in 2016.

Figure 4: AlphaGo logo

 In contrast, flexible artificial intelligence systems are designed to adapt to a wide

range of tasks and domains, learning from diverse data and applying acquired

knowledge to new contexts. These systems, like Google's TensorFlow9, are based on

machine learning and deep learning, allowing developers to create models for various

applications.

Figure 5: TensorFlow logo

 Lastly, hybrid artificial intelligence systems combine different techniques and

approaches, such as rule-based reasoning and machine learning, to achieve optimal

performance in various situations, as demonstrated by IBM Watson10, which integrates

various technologies to solve complex problems across different sectors. It is

important to note that these types of systems are not mutually exclusive and can be

combined or integrated depending on the specific needs of the application. Artificial

intelligence continues to evolve, introducing new approaches and paradigms that

8 https://www.deepmind.com/research/highlighted-research/alphago/
9 https://www.tensorflow.org/about
10 https://www.ibm.com/watson

14

expand the possibilities and capabilities of AI systems, including intelligent agents

that act within the context of artificial intelligence.

Figure 6: IBM Watson logo

In summary, AI represents a dynamic and evolving field with vast potential to revolutionize

industries, enhance productivity, and improve human lives.

By harnessing advanced techniques and technologies, AI systems continue to push the

boundaries of what machines can achieve, forming the way for a future where intelligent

systems collaborate seamlessly with humans to tackle complex challenges and drive

innovation.

15

2.2. Recommender systems

In our current times, the proliferation of information and choices has become both a boon

and a challenge for individuals seeking to navigate all the options available to them.

Recommender systems emerge as invaluable tools in this context, designed to alleviate the

burden of choice overload by providing personalized recommendations tailored to individual

preferences and needs.

At their core, recommender systems serve the fundamental purpose of assisting users in

making informed decisions among all the available options, whether in the domain of

entertainment, shopping, or, also, dietary choices.

Central to the functioning of recommender systems are the entities that constitute their

framework:

 objects;

 users;

 transactions;

Objects represent the items or entities being recommended, which could range from movies

and books to products and recipes.

Users, on the other hand, are the individuals for whom recommendations are generated, each

characterized by their unique preferences, behaviours, and past interactions with the system.

Transactions encapsulate the interactions between users and objects, providing valuable data

that forms the basis for recommendation generation.

The operation of a recommender system typically unfolds through several distinct phases,

each playing a crucial role in the recommendation process:

1. Training Phase:

The training phase represents the foundations upon which the recommender system is

built. During this phase, the system gathers and processes a vast amount of data,

including user interactions, item attributes, and contextual information.

This data is then used to construct a comprehensive model of user preferences and

item characteristics. Techniques such as machine learning algorithms, data mining,

16

and statistical analysis are employed to extract patterns and insights from the data,

enabling the system to understand the underlying relationships between users and

items.

2. User Modeling Phase:

With the main model in place, the recommender system proceeds to the user modeling

phase. Here, the system refines its understanding of individual user preferences based

on their interactions with the system over time. Furthermore, in the user modeling

phase, ongoing research by Zhou et al.11 focuses on enhancing user modeling through

the incorporation of multimodal data, such as user preferences expressed through text,

images, and social interactions. By leveraging multimodal information, recommender

systems can better understand user preferences and provide more personalized

recommendations.

3. Filtering and Recommendation Phase:

The culmination of the recommendation process occurs in the filtering and

recommendation phase. Drawing upon the insights obtained from the training and user

modeling phases, the system employs filtering techniques to navigate through vast

amounts of data and identify items that are most likely to appeal to individual users.

These filtering techniques may include content-based analysis, collaborative filtering,

or hybrid approaches that combine multiple recommendation strategies. By

considering factors such as item relevance, user similarity, and contextual relevance,

the system generates personalized recommendations tailored to each user's unique

preferences and needs.

Several approaches have been developed to address the diverse needs and challenges

encountered in recommendation tasks.

11 Zhou, H., Zhou, X., Zeng, Z., Zhang, L., & Shen, Z. (2023, February 9). A Comprehensive Survey on
Multimodal Recommender Systems: Taxonomy, Evaluation, and Future Directions.

17

 The content-based approach involves aligning information about an item's content

with the user's profile, including the item's description, attributes, keywords, and

labels. These details are compared with the user's profile, constructed by analyzing the

items the user has engaged with during their navigation. Based on this comparison, the

recommendation system suggests items to the user that align with their interests.

Content-based approaches often employ reliable and probabilistic estimation

techniques, such as Bayesian classifiers. An example application of the content-based

approach is the "Recommended for You" section on Netflix, where the system offers

movie suggestions based on content similarities to the user's watched films.

Figure 7: Content Based approach

Figure 8: Netflix's content based approach

18

 On the other hand, the Collaborative Filtering approach utilizes collaborative

algorithms to generate recommendations. This approach centers around the concept of

"neighbourhood," representing users with similar tastes and preferences to the user for

whom the recommendation is intended. In this process, users assign ratings to items,

and based on these ratings, the active user's neighbourhood is identified.

Subsequently, items that are highly regarded by the neighbourhood and have not been

explored by the user are recommended. Collaborative approaches can be categorized

into User-To-User and Item-to-Item methods.

Figure 9: Collaborative Filtering approach

o User-To-User: the goal here is to identify the neighbour of the active user who

has the highest similarity. This is achieved by calculating similarity functions

such as cosine similarity or Pearson similarity. Once the neighbour is

identified, predictions are made for the values of items that the neighbour has

rated but the active user has not. Finally, the item with the highest value is

recommended.

For instance, Amazon also uses collaborative filtering to suggest products

based on what similar users have watched and rated.

19

Figure 10: Amazon's Collaborative Filering approach User-To-User

o Item-to-Item: In this approach, the focus is on items known to appeal to the

active user. Similarity is sought between the active user's items and all other

items to recommend an item that might interest the user. This approach is used,

for example, by Spotify to create the Discovery Weekly playlist every week.

Figure 11: Spotify's Collaborative approach Item-To-Item

Despite its potential, the collaborative approach faces challenges such as data sparsity and

the "cold start" problem. Data sparsity occurs when there are few ratings available for items,

which can compromise the effectiveness of recommendation algorithms. Additionally, the

"cold start" problem arises when new items lack user interactions and ratings, making it

challenging for a collaborative algorithm to handle such situations.

20

Hybrid approaches combine elements of both the content-based and collaborative

approaches.

These approaches can be categorized based on how they integrate these two methods, such as

separate implementation followed by combining predictions, incorporating content-based

features into the collaborative approach, incorporating collaborative features into the content-

based approach, or building a unified model.

Figure 12: Hybrid approach

In the context of dietary choices, recommender systems hold significant potential to

revolutionize how individuals approach nutrition and meal planning.

However, food recommender systems face unique challenges that must be addressed to

realize their full potential. One such challenge lies in the inherently subjective nature of food

preferences, which can vary widely among individuals based on cultural, dietary, and

personal factors. Additionally, the complex interplay of nutritional considerations, taste

preferences, dietary restrictions, and meal variety further complicates the recommendation

process.

Hence, unlike traditional recommender systems tailored for movies or products, food

recommender systems needs to handle the complex relationship between taste preferences

and nutritional considerations.

While user preferences certainly play a pivotal role in guiding recommendations, the

overarching objective of promoting healthy recipes introduces an added layer of complexity.

This requires moving away from the conventional approach of simply suggesting items based

21

on user likes or ratings, since prioritizing taste alone may not align with the broader goal of

fostering nutritious eating habits.

Despite these challenges, food recommender systems offer promising solutions to address the

pressing need for personalized and health-conscious dietary guidance.

22

2.3. Conversational agents & Chatbots

Conversational agents, or conversational systems, have witnessed significant advancements

since the inception of the ELIZA conversational agent by Weizenbaum in 196612.

ELIZA was one of the earliest examples of a natural language processing program designed

to simulate conversation. The conversational agent operated by employing simple pattern-

matching techniques to recognize and respond to user input, emulating the role of

psychotherapist. Despite its rudimentary capabilities, ELIZA achieved remarkable success in

engaging users in seemingly meaningful conversations by reflecting users' statements back to

them in the form of questions and prompts.

What set ELIZA apart was its ability to elicit emotional responses from users, often leading

them to anthropomorphize the program and attribute human-like qualities to it. By exploiting

the human tendency to anthropomorphize, ELIZA demonstrated the potential for computers

to simulate human-like conversational behaviour, laying the groundwork for subsequent

developments in conversational AI.

Figure 13: Conversational agent ELIZA

12 Joseph Weizenbaum. Eliza—a computer program for the study of natural language communication
between man and machine. Communications of the ACM, 9(1): 36–45, 1966.

23

Hence, conversational agents have a

longstanding history, and their resurgence in

recent times can be attributed to a confluence of

practical and technological motivations. From a

practical standpoint, there is a growing demand

for more natural interaction strategies that mimic

human conversation. This is particularly evident

in scenarios such as driving, where users require

hands-free and intuitive interfaces. Additionally,

there is a need to automate certain tasks, such as

customer relationship management (CRM), to

enhance efficiency and productivity.

On the technological front, advancements in algorithms have played a pivotal role in

revitalizing conversational agents. Improved algorithms for processing voice and audio,

understanding user input, and handling natural language both in input and output have

significantly enhanced the capabilities of conversational agents. These advancements have

paved the way for more seamless and context-aware interactions between users and

conversational agents.

Figure 15: Several conversational agents

In terms of input, conversational agents consider the dialogue history, which includes the last

few utterances exchanged, and optionally, background knowledge to enrich the conversation

Figure 14: Conversational agent Clippy

24

context. As for output, the agent generates the next utterance to interact with the user in each

turn, along with the possibility of performing specific actions, such as recommending items

or controlling devices like lights or music players.

Conversational agents can be broadly categorized into open-domain and goal-oriented

agents.

 Open-domain agents are designed for generic chit-chat conversations and can handle a

wide variety of topics.

Figure 16: Open-domain agent Chat-GPT

 Goal-oriented agents are tailored for specific domains and are adept at guiding

conversations to fulfil user tasks, such as booking flights or recommending movies.

Figure 17: Goal-oriented agent Zalando helper

25

One key distinction in conversational systems lies in their architecture, with systems

categorized as either modular or end-to-end.

 Modular conversational systems include distinct components, each responsible for a

specific aspect of the conversation, such as automatic speech recognition, natural

language interpretation, dialog management, natural language generation, and text-to-

speech synthesis.

 In contrast, end-to-end systems integrate all functionalities into a single framework,

offering a streamlined approach to conversation processing.

In this context, conversational recommender systems (CRSs) have emerged as a specialized

application aimed at facilitating personalized recommendations through conversational

interactions. “A CRS is a software system that supports its users in achieving

recommendation-related goals through a multi-turn dialogue”13, they integrate

recommendation capabilities into the conversational flow, enabling users to receive tailored

recommendations during dialogue exchanges. They focus on guiding the users through a

natural conversation to collect their preferences14 instead of asking them to list all at once.

Input processing for conversational recommender systems (CRSs) involves determining the

most suitable interaction modes and strategies.

In particular, CRSs must support various interaction types, including natural language,

buttons, or a mix of both, depending on user preferences and the context of use.

The choice of interaction strategy, such as voice, text, or other forms like handwritten input,

impacts the user experience significantly and should align with the system's capabilities and

user expectations.

Understanding and processing user inputs it’s not a trivial task and require robust intent

recognition mechanisms to extract the user's underlying needs and intentions accurately.

13 Jannach, Dietmar, et al. "A survey on conversational recommender systems." ACM Computing Surveys
(CSUR) 54.5 (2021): 1-36.
14 Michael Jugovac and Dietmar Jannach. Interacting with recommenders – overview and research directions.
TiiS, 7(3):10:1–10:46, 2017. doi: 10.1145/3001837. URL https://doi.org/10.1145/3001837.

26

User modeling in CRSs is crucial for personalizing recommendations based on user

preferences and informative needs. This involves modeling not only objective features, such

as user demographics and past interactions, but also subjective features like user preferences,

interests, and contextual factors. Then, the recommendation process involves managing the

preference elicitation phase and transitioning to the recommendation phase seamlessly.

Effective dialogue state management is essential to track the user's current preferences and

guide the recommendation process accordingly.

Output generation instead, focuses on managing user feedback, continuing the dialogue flow,

and presenting recommendations in a user-friendly manner.

Returning recommendations in a clear and understandable format is crucial, and explanations

can enhance user trust and comprehension.

Semantics also plays a fundamental role in understanding user queries and generating

appropriate responses15, for all the reasons listed so far, the design of CRS involves several

key components, such as:

 dialog manager;

 intent recognizer;

 entity recognizer;

 sentiment analyzer;

Figure 18: CRS general architecture

15 Lops Pasquale, Musto Cataldo, Narducci Fedelucio, Semeraro Giovanni, "Semantics in Adaptive and
Personalised Systems", Springer.

27

The dialog manager orchestrates the conversation flow. It manages the sequencing of

dialogue turns, maintains context across exchanges, and coordinates the handover between

different system components.

The intent recognizer identifies the user's intent or request. By identifying the user's

underlying intent, it enables the system to tailor its responses and recommendations

accordingly, ensuring relevance and effectiveness in meeting user needs.

The entity recognizer extracts relevant entities or parameters from user input, facilitating

context-aware recommendation generation. By parsing user input and identifying relevant

entities, the entity recognizer facilitates the creation of personalized recommendations that

align with user preferences and requirements.

Additionally, the sentiment analyzer assesses user sentiment or feedback, enabling the system

to adapt recommendations based on user preferences and satisfaction.

CRSs are proved to be more effective for more complex recommendations with information

overload. For example, planning a trip where multiple agents with different goals are

required, or recommend a book/movie where the agent queries are mostly relevant to the

system’s current context.

An essential aspect of CRSs and, in particular, of this thesis experiment, is also granting clear

explanations to users regarding the rationale behind recommendations. Clear explanations

not only enhance user understanding and trust but also enable users to make informed

decisions.

In our endeavour, we’ll leverage Python16 as programming language and integrate the CRS in

the Dialogflow platform17 by Google. Python offers a versatile and powerful programming

environment, equipped with libraries and frameworks for natural language processing and

machine learning. Dialogflow offers features such as natural language understanding, intent

recognition, and context management, thereby streamlining the development and deployment

process of our conversational recommender system.

16 https://www.python.org/
17 https://cloud.google.com/dialogflow

28

2.4. State of the art

Currently, there are several food recommender systems available in the market or open to the

public. Among these, two notable ones are:

 Yummly18:

Yummly is a well-known food recommendation system accessible through both an

app and website. Its recommendation algorithm incorporates various factors to

provide personalized suggestions to users:

o User Preferences: Yummly allows users to input their food preferences such as

favourite or avoided ingredients, dietary restrictions (e.g., vegetarian, vegan,

gluten-free, etc.), and personal tastes.

o Recipe Reactions: Users can interact with recipes in different ways, like adding

them to favourites, saving for later, or flagging favourite recipes. These actions

impact future recommendations.

o Popular Recipes: Yummly also considers recipes that are popular and highly

rated by users when generating recommendations.

18 https://www.yummly.com/

Figure 19: Yummly homepage

29

 AllRecipes19:

AllRecipes is another platform for recipe collection and sharing that employs a

recommendation system to propose new recipes to users. Key features of AllRecipes'

recommendation system include:

o User-Favorite Recipes: AllRecipes tracks recipes favoured by users, using them

to suggest other similar or related recipes.

o Reviews and Ratings: User reviews and ratings of recipes are factored into the

recommendation algorithm. Well-reviewed and positively rated recipes are

more likely to be recommended.

o Cuisine Style: AllRecipes considers users' preferred cuisine styles such as

Italian, Mexican, Asian, etc., and suggests recipes based on these preferences.

o Trends and Popularity: AllRecipes' recommendation algorithm also takes into

account culinary trends and popular recipes of the moment to provide updated

and relevant suggestions.

19 https://www.allrecipes.com/

Figure 20: AllRecipes homepage

30

However, despite these features, neither of these platforms currently emphasizes macros or

calories as primary recipe features, nor do they address user goals related to nutrition.

Instead, they focus on suggesting recipes that users might enjoy without incorporating

detailed nutritional information about the recipes.

Fewer conversational food recommender systems are available

compared to traditional platforms, and none of them delve deeply

into the unique characteristics of users as comprehensively as our

bot. For instance, many of these systems, such as Mealime 20- a

meal planning app that includes a conversational chatbot feature.

Users can chat with the chatbot to receive personalized recipe

recommendations based on their dietary preferences, cooking

habits, and available ingredients - do not prioritize macros or

calories as primary recipe features, nor do they address user

goals related to nutrition in a detailed manner. Instead, they

primarily focus on suggesting recipes that users might enjoy

based on general preferences without incorporating

comprehensive nutritional information into their

recommendations.

Our bot has been specifically designed to bridge this gap by introducing advanced features

analysis that takes into account users' personal preferences, including specific nutritional

goals such as macros, calories, nutrients and much more.

20 https://www.mealime.com/

Figure 21: Mealime's automated
Facebook assistant

31

3. @food_recsys_bot

3.1. The Overview

Food recommendation systems play a significant role in providing personalized suggestions

and recommendations to users based on their dietary habits, recipes of interest, and food

preferences.

These systems are designed to enhance user experience by offering tailored food choices that

align with their individual needs and tastes.

Figure 22: Food Recommender System's Idea

However, despite their potential benefits, current food recommendation systems face several

limitations that hinder their effectiveness and reliability.

One of the primary limitations of current food recommendation systems is the lack of a

guarantee that the recommended foods are truly healthy for users. While these systems may

take into account certain nutritional parameters, they often do not comprehensively assess the

overall healthiness of the recommended foods, which can lead to suboptimal dietary choices

for users.

Another significant limitation is the assumption that users' past food preferences will remain

unchanged over time. This static approach ignores the potential for changes in users' diets,

32

lifestyles, and food preferences, which can significantly impact the relevance and accuracy of

the recommendations provided by the system.

Furthermore, food recommendation systems face a data scarcity issue, as users typically

evaluate only a small portion of the available foods21. This limited data pool makes it

challenging to find similar users or foods, thereby reducing the system's ability to generate

relevant and diverse recommendations.

To overcome these limitations, leveraging natural language processing (NLP) techniques has

emerged as a promising approach. NLP techniques, such as conversational agents, enable

food recommendation systems to acquire and filter data differently based on the user's real-

time situation and evolving preferences. By incorporating NLP techniques, food

recommendation systems can facilitate impartial food evaluations by selecting foods based

solely on personal information extracted from the user.

This includes considering dietary restrictions, current food preferences, nutritional

requirements, available time for cooking and many others, thereby enhancing the relevance

and suitability of the recommended food choices.

In this context chatbots serve as indispensable allies in creating a personalized and interactive

experience for users. These intelligent conversational agents, powered by advanced natural

language processing capabilities and artificial intelligence algorithms, engage users in

meaningful dialogues to understand their unique dietary preferences, restrictions, and goals.

Unlike traditional static interfaces, chatbots add a human-like touch by asking relevant

questions, providing context-aware recommendations, and adapting their responses based on

real-time user feedback.

This dynamic interaction not only enhances user engagement but also enables the system to

continually learn and improve its recommendations over time.

Moreover, to enhancing user engagement and improving recommendation accuracy over

time, chatbots also play a crucial role in promoting education and awareness regarding

healthy eating habits and sustainable food choices.

21 Rostami, M., Farrahi, V., Ahmadian, S., Jalali, S. M. J., Oussalah, M. (2023). A novel healthy and time-
aware food recommender system using attributed community detection. Expert Systems with Applications,
221, 119719. https://doi.org/10.1016/j.eswa.2023.119719

33

By leveraging chatbots to deliver educational content in a personalized and interactive

manner, food recommendation systems can empower users to make informed decisions that

align with their health and sustainability goals. This educational aspect not only adds value to

the user experience but also contributes to promoting healthier and more sustainable

lifestyles on a broader scale.

In line with this mission, our bot, @food_recsys_bot, is designed to not only recommend

healthy recipes but also to educate and raise awareness about nutrition and sustainable food

practices and its purpose is to serve as a recommendation system for healthy recipes with a

focus on providing persuasive explanations for the suggestions.

The bot aims to encourage users to adopt healthier eating habits by offering personalized

recommendations based on their preferences, restrictions, dietary goals, nutritional needs and

several other characteristics.

Some of the functionalities offered by the bot are:

 Providing personalized recipe recommendations:

The bot takes into account users' dietary preferences, restrictions, goals, activity levels

and many other factors to suggest healthy recipes that align with their preferences, but

most importantly with their needs.

 Offering persuasive explanations:

The bot provides detailed explanations for its recommendations, including

comparisons between recipes and insights into their nutritional values. These

explanations are designed to educate users and motivate them to make healthier food

choices.

 User profiling and customization:

The bot gathers essential information about users through a streamlined profiling

process, allowing it to offer more accurate and relevant recommendations. Users can

also modify their profiles to update their preferences and goals whenever they please.

34

Overall, @food_recsys_bot, empower users to make informed and healthier food choices by

providing customized recipe recommendations and meaningful explanations tailored to their

individual needs and preferences.

Three are its main components:

1. The bot itself:

The @food_recsys_bot is the core component of this integrated system, serving as the

interface through which users interact with the food recommendation system.

The bot is designed to operate within the Telegram platform through Google

Dialogflow, providing users with personalized recipe recommendations and

persuasive explanations to enhance their experience. It handles user inputs, processes

requests, and delivers relevant information and suggestions based on the user's profile

preferences.

2. The recommendations system:

This is responsible for generating personalized recipe recommendations for users.

It generates customized recipe suggestions by analyzing user input and profiles,

incorporating data from the Italian site giallozafferano.it22 . It considers factors like

dietary restrictions, caloric goals, and nutritional preferences to provide tailored

recommendations promoting healthier eating habits.

3. The explanation system:

The explanation system plays a vital role in providing users with detailed insights and

explanations regarding the recommended recipes. It enhances user understanding and

awareness by delivering persuasive explanations that highlight the healthiness,

nutritional benefits, and sustainability of the recommended recipes. The explanation

system employs different explanation types.

In particular for this thesis we will focus on the explanation methods foodGoals,

foodMacros, sustainability and seasonality to provide insights into daily caloric intake,

macronutrient distribution, ideal nutritional ratios and information about the

22 https://www.giallozafferano.it/

35

seasonality of ingredients as well as their level of sustainability. It also facilitates

comparisons between recipes, allowing users to make informed decisions after

receiving information about both recipes compared. The explanation system aims to

change users' perspectives on food choices, encouraging them to adopt healthier

eating habits and make informed dietary decisions.

Figure 23: @food_recsys_bot structure

3.2. The implementation

3.2.1 The recommendation system

The recommendation system's task is to provide users with coherent suggestions for dishes

and recipes based on their characteristics. The core of this recommendation process lies in

the information provided by the user through conversation with the chatbot, which is then

processed as parameters for the recommendations. Specifically, this information includes the

user's physical state, such as height, weight, and dietary goals, socio-demographic factors

like age, lifestyle, or how much they are willing to spend on the dish they are seeking

recommendations for.

These insights are then processed in reference to the recipe dataset used for

recommendations, structured so that each recipe is associated with various parameters that

represent them, aligning with the information gathered from users. Given the extensive

nature of the dataset, a recalculation of the score for each recipe based on all parameters is

36

utilized, achieved through a set of rules created based on Food Knowledge23. This ensures

that recommendations are in line with users' preferences and needs, providing accurate and

personalized suggestions.

The recommendation service has been implemented in Python using the Flask framework,

suitable for web application development. The recipes recommended by the chatbot are

sourced from a dataset containing thousands of recipes from the GialloZafferano.it website.

Various libraries were employed during development, such as "Pandas" for dataset handling

and the "python-telegram-bot" library for suggestion requests.

The parameters of the request include:

 n: Specifies the number of recipes to extract.

 category: Specifies the categories of recipes requested (i.e., "First courses," "Main

courses," "Desserts").

 isLowNickel, isVegetarian, isLactoseFree, isGlutenFree, isLight: Boolean values

indicating any dietary restrictions specified by the user, specified separately.

 difficulty: Indicates the difficulty level of the recipe to recommend.

 goal: Refers to the user's dietary goal.

 user_cost: Indicates the user's preferred recipe cost.

 user_time: Indicates the user's preferred recipe preparation time.

 age: Refers to the user's age.

 sex: Indicates the user's gender.

 mood, activity, stress, sleep, depression: Integer values (0=yes, 1=no) related to the

user's mood, activity, stress, sleep, and depression status.

 fatclass: User classification based on BMI.

The service primarily consists of two files for recipe recommendation:

1. food_rs_webservice.py:

This is the main file implemented as a Flask app. It reads information from the

database, handles HTTPS requests, and creates recommendations in JSON format

23 I. Paparella, «Progettazione e Implementazione di un Food Recommender System Basato su Holistic User
Model» 2020.

37

considering the parameters passed by the user. The file also includes Flask app

initialization, the definition of the endpoint for the '/’ route, and the main "score"

function, which calculates a score for each recipe based on the "ratingValue" and

"ratingCount" columns.

2. recommender_script.py:

This file is crucial for the connection between the recommender system and the

Conversational Agent. It contains three classes: Recommendation,

Recommendation_due and Recommendation_tre. They all have a static method for

generating recipe suggestions based on user information. The Recommendation class

handles a single recipe suggestion, while Recommendation_due and

Recommendation_tre handle, respectively, two and three different suggestions, in

order to prompt the user with a second or a third suggestion whenever the first one is

not suitable. The classes process requests forwarded to the server, build the request

URL, retrieve recipe data, and send a response containing the title and URL of the

suggested recipe.

In addition to this information, the code includes various lists such as RichIn.json, which

contains foods categorized on their level of certain substance such as calcium, magnesium,

iron and so on, or Seasonality.json and Sustainability.json that asses the levels of seasonality

and sustainability of the recipes. These lists can be used to further filter the DataFrame based

on user preferences or needs.

This approach allows the chatbot to provide personalized suggestions based on user

preferences and the availability of recipes in the dataset, ensuring an interactive and useful

experience.

3.2.2 The Explanation system

The explanation system is responsible for formulating and providing users with explanations

regarding the recipes recommended by the recommendation system.

38

When a person seeks new recipes to enrich their culinary knowledge, they are often skeptical

and doubtful about whether the recipes align with their interests, intolerances, health

conditions, or dietary restrictions.

Therefore, it is crucial that, in addition to recipe suggestions, users can ask questions about a

wide range of information, such as nutritional details, potential risks and benefits associated

with nutrient intake, costs, preparation times, and adherence to dietary restrictions.

The fact that users can interact in natural language with an entity like the chatbot stimulates

their curiosity and cognitive ability regarding food, encouraging them to discover more

recipes and information. The explanation system associated with the chatbot enables this by

providing several different types of explanations (discussed later in this work) related to the

recommended recipes, with options for single styles or comparisons.

The explanations can be grouped into macro-categories, including nutritional aspects,

personal factors (such as cost, preparation time, culinary skills, user's goals), health

considerations (risks, benefits, and user's age), and recipe popularity. These explanations are

available for both individual recipes and comparisons between two recipes.

The explanation system is designed with dedicated modules for generating explanations in

natural language based on the parameters received from the recommendation system,

transferring explanations to the chatbot, and a main module that coordinates these operations.

The explanation service has been implemented in Python, also utilizing the Flask micro-

framework. Unlike the recommendation system, the URL used for the request contains three

mandatory parameters, concerning the style of explanation (whether the explanation is

singular or comparative), the type of explanation (there are 19 provided explanation types),

and the img_url of the recipe recommended by the recommendation service.

There are three Python files forming the explanation service:

39

1. web_expl.py:

This is the main file representing the web

app written using Flask.

The main function in the file is get_expl,

which is associated with the path "/expl"

in the application through the use of the

@app.route('/expl') decorator.

Upon application startup, paths to JSON

files containing various information,

including data on nutrients, dietary

restrictions, foods rich in certain

nutrients, food sustainability, food seasonality, and their relation to dopamine, are

defined.

Subsequently, within the get_expl function, the contents of the JSON files are read

and loaded into corresponding variables. The path to a CSV file representing the

recipe dataset is also specified.

Recipes to compare are then identified through the URLs provided as parameters in

the GET request.

A scan of the rows of the CSV file is performed to find information corresponding to

the URLs of the provided recipes. The recipe information is then stored in two

variables, recipeA_values and recipeB_values.

Following this, an empty dictionary user is created containing various user parameters

provided as parameters in the GET request.

Subsequently, two lists of experiments are defined, one for explanations related to a

single recipe and the other for comparative explanations between two recipes.

These lists contain strings representing the types of experiments that can be executed

to generate explanations.

An empty dictionary explanations is then created to store the generated explanations.

The index of the requested experiment and the index of the desired explanation style

in the GET request are checked. If the indices are valid, the corresponding

explanations are generated using the get_str_exp function defined in the external

Figure 24: /expl route

40

module called expl_types. The explanations are then added to the explanations

dictionary. Finally, the explanations are converted to JSON format using Python's json

library, and the resulting JSON is returned as the client's request response.

2. expl_types.py:

Its main function is get_str_exp, which is called by web_expl.py and coordinates the

creation of justifications by selecting the specific type requested.

The get_str_exp function accepts several parameters:

 exp_type: a string representing the desired type of explanation.

 recipeA_values and recipeB_values: the values of properties of the two recipes.

 user: the dictionary containing user parameters created in web_expl.py.

Within the get_str_exp function, a check is performed on the value of exp_type to

determine which type of explanation should be generated. Based on the value of

exp_type, the corresponding function is called to create the specific experiment.

Other functions in the module contain implementations for creating specific types of

explanations that will be later discussed.

3. The third and final file related to the explanation service is expl_script, a file very

similar to the previously described recommender_script. It is also an essential

auxiliary file for the connection between the chatbot and the Recommender system.

In this file, a single class named Explanation is defined, comprising 33 static methods,

each related to the explanation and comparison types. The structure of all methods is

the same; therefore, we will explain the general structure of a function related to

explaining a single recipe and one related to comparing two recipes, which are then

applicable to all functions.

As a general example of explaining a single recipe, we take the "spiegazione_piatto" method,

which is called when the user requests a general explanation of the recommended recipe.

41

This method, like all others, accepts two parameters: update and context, which are specific

objects for interaction with the Telegram bot. The method structure is as follows:

1. Initially, an empty list named restr_list is initialized, which will be used later to store

dietary restrictions.

2. The value of restrictions within the context.user_data dictionary, representing the

recipe recommended by the recommendation service, is then checked.

If a restriction is active (value equals 1), the corresponding identifier is added to the

restr_list.

3. Next, a parameter named restr is created, to which the restriction strings are

concatenated, separated by a comma, using the join method. If restr_list is empty, restr

will be set to None.

4. An URL towards the external web service handling explanationsis then defined.

5. Similarly, a dictionary named params is created, containing the parameters necessary

for the web service request. These parameters include the type of explanation, the

style, and other specific user information.

6. The img_url parameter of the Recommendation class, is used to refer precisely to the

just recommended recipe and perform explanations on it.

7. A complete URL is created by including the parameters using the urlencode function

from the urllib.parse library. The first three are mandatory parameters, concerning the

type of explanation, the explanation style (0 represents the style of explaining a single

recipe, 1 represents the style of and, -1 represents both), and the URL of the image of

the recipe recommended by the recommendation service.

42

Figure 25: Example of the created URL

8. A GET request is made to the complete URL using the requests library, and the

response is obtained as JSON.

9. This JSON explanation is then processed, particularly from the "explanations" field.

10. If an explanation is present, a process of splitting the explanation into segments of a

maximum length of 500 characters is performed to later translate the message.

11. A response message containing the text is sent to the update sender.

3.2.3 The Bot

In the original version24 of the bot, the process of creation was divided into several phases:

 User Interface Design: First and foremost, the organization of the chatbot's interface

on Telegram was planned, using the "Python-Telegram-bot" library in the Python

environment to manage conversations and interact with the Telegram API.

 Conversation Flow Definition: The chatbot was programmed to initiate conversations

with users following a conversation flow model. This model guides users through

24 Lopedota, F. (2022/2023) "FoodRecSysBot": Progettazione e sviluppo di un Agente conversazionale per il
supporto personalizzato nella scelta di cibo e ricette.

43

structured questions and answers, adapting the flow based on the received information

and storing important details.

 Integration with the Food Recommender System: Several Python libraries were used

to connect the chatbot to the Food Recommender System. This system generates

personalized culinary recommendations based on users' responses to personal

questions.

 Response Management: To efficiently handle the chatbot's responses, a Design Model

based on Intents was adopted25. This model focuses on identifying user Intents and

providing appropriate responses based on these Intents. The Dialogflow platform was

used to train the chatbot to recognize user Intents using machine learning algorithms

and provide coherent and relevant responses.

The main file for the bot implementation is FoodRecommenderSys.py. In this file, the

creation and structure of the Telegram bot that provides suggestions and explanations

generated by the food recommender system are implemented. The bot interacts with users

through a series of questions about their personal information and then uses the provided

answers to offer personalized suggestions based on them. To set up a properly functioning

and effective system that allows user interaction using natural language, various libraries and

different techniques were used. The main ones are python-telegram-bot, an open-source

library for developing Telegram bots using Python, and Dialogflow, which plays a

fundamental role in processing user requests in natural language and linking to the Food RS.

25 Amir Shevat «Designing Chatbots: Creating Conversational Experiences».

44

First, to create a bot on Telegram, you need to search for "BotFather"

within the app itself and follow its instructions to create a new bot. The bot

creation process involves obtaining a unique token from BotFather, which

identifies the bot. Only after this can the bot code be written, importing the

Telegram and Telegram.ext libraries that provide the necessary

functionalities to interact with the Telegram API.

Figure 26: BotFather chat example

In the specific case of this thesis, the first part of the FoodRecommenderSys.py file declares

a series of constants to define a conversation state management schema. These constants,

such as "GENDER," "AGE," "MOOD," and others, are used as identifiers to indicate the

current state of the user during interaction with the bot. Each state represents a specific

question asked to the user regarding their information related to that constant. This is done

Figure 23: BotFather logo

45

through a ConversationHandler object, which defines all states and specifies which functions

should be executed when the user is in each of these states.

For instance, if the user is in the GENDER state, it means that the user is currently

responding to the gender question (and the gender function will be executed), or AGE if the

chatbot is waiting for the user to provide their age (which will be processed with the age

function). After defining these constants, all the functions that allow the bot's operation are

set up.

The "start" function serves as the bot's initial function when a user begins a conversation

using the "/start" command which it the default command when initiating a new conversation

with a telegram chatbot.

This function prompts the user to choose their gender by typing "Man" or "Woman".

Following this, the chatbot presents a series of questions with corresponding buttons for user

selection, allowing for information gathering. The user's gender response is stored in their

information, and the subsequent "gender" function verifies and records this data. If the user's

response is invalid, the chatbot remains in the gender selection state until a correct response

is provided. Similar button-based interactions are used for subsequent questions regarding

age, weight, and other preferences, maintaining a consistent structure throughout the

conversation flow.

In each of these functions, the user's responses are stored in context objects, which will be

the parameters of the request sent to the recommendation and explanation servers (an

example of a request can be seen in the previous paragraph).

The process is repeated until all questions posed to the user are completed, and the last

function returns a ConversationHandler.END to declare the end of the conversation states.

Before moving on to the main part, it is worth further discussing the "dialogflow_mode"

function.

It uses the Google Cloud Dialogflow service to interpret the user's message and provide a

response based on the detected Intent. Depending on the detected Intent (e.g., "suggestion" or

"explanation goal" etc.), the bot calls the appropriate functions belonging to the

46

recommender_script.py and expl_script.py files described earlier to provide the requested

information to the user.

We thus come to the end of the implementation part with the main program "main()." Here,

the necessary objects are initialized to start the Telegram bot and manage user interactions.

First, the logger is initialized, which is an object that records program events during

execution, such as information log messages, warnings, or errors. In the case of this project,

it is used to format and display log messages in a specific format specified by the format

string '%(asctime)s - %(name)s - %(levelname)s - %(message)s', and it also confirms the

bot's correct startup.

Next, an Updater object is created. The Updater is the main component of the python-

telegram-bot library that handles interactions with the Telegram API. It requires the Telegram

API access token to identify the bot, which was provided by BotFather.

Once the Updater is created, its dispatcher (event handler) is obtained. The dispatcher is

responsible for routing messages from Telegram to the corresponding message or command

handlers you will define later. In practice, it listens for and routes user requests to the

appropriate code. Subsequently, a ConversationHandler object is created to manage the

conversation flow with users. So, among the main components of the bot there are the

conversational and command handlers used to manage user interactions and execute specific

actions within the bot, in particular:

1. Conversational Handlers:

These handlers manage conversations with users by defining entry points, states, and

fallbacks.

Each conversational handler has entry points that are typically triggered by command

handlers or specific user actions.

States represent different stages or steps within a conversation, and they are associated

with message handlers that handle user input during those states.

Fallbacks are used to handle unexpected or invalid user input during a conversation.

2. Command Handlers:

47

These handlers execute actions based on user commands or inputs.

Each command handler is associated with a specific command (e.g., "/create",

"/modify", "/clear_session") that users can input to trigger a particular action.

Command handlers are typically used for tasks like initiating profile creation or

modification, clearing session data, or starting specific conversation paths.

Figure 27: Sequence diagram

48

That being said, the bot was re-implemented for this thesis due to some issues with the

previous version. In particular reimplementing the bot involved updating project

requirements to address the deprecated python-telegram-bot v13.4 library, necessitating an

upgrade to version 20.726. This update brought significant changes to the main function logic,

replacing the dispatcher with the Application component that encapsulates crucial elements

for bot execution, such as the updater and dispatcher itself.

Additionally, the new version of the library required the adoption of the async-await

paradigm that facilitated handling responses asynchronously. Hence, within the main module,

all functions were modified to adhere to this paradigm, enabling response management to

occur asynchronously by awaiting the resolution of message updates on the chat-bot side

before concluding.

These modifications were essential to ensure the bot's functionality and responsiveness,

optimizing user interactions and overall performance. Then also some features were

enhanced, let’s delve into the details of the modifications:

 The explicit comparison between recipes has been improved significantly enhancing

user experience and decision-making within the system.

Previously, users were presented with a mere list of facts without a clear preference

between recipes, leaving the final decision solely to the user's responsibility.

However, with the updated explanation module, users are now provided with a clearer

preference in comparative explanations, offering a real suggestion in the comparisons.

This means that the system now evaluates and highlights one of the recipes as better

than the other, facilitating users in making informed choices.

26 https://pypi.org/project/python-telegram-bot/20.7/

49

Figure 28: Example of better comparion - specifically in the end

 In the previous project, there was no provision for users to modify their data.

However, the /modify command was introduced, managed through three functions and

a dedicated conversational handler. In particular:

o modify_profile(update: Update, context): It checks if the "gender" attribute is

present in the user's data. If not, it replies with a message indicating that the

profile hasn't been created yet and suggests using the "/create" command first.

If the profile exists, it constructs a message displaying the current profile

attributes and asks the user what attribute they want to modify. The function

ends by returning the ATTRIBUTE state.

o choose_attribute(update: Update, context): This function handles the user's

choice of attribute to modify in their profile. It takes the user's input, converts it

to lowercase, and checks if it matches any predefined attributes in the

attribute_options dictionary. If there's a match, it constructs a message with

options related to that attribute and sends it to the user with a keyboard for

selection.

If the user selects "none," it ends the conversation. If the input doesn't match

any options, it asks the user to repeat the input. The function returns

50

TO_CHOICES after sending the attribute options message to the user,

indicating a transition to the next step in the conversation.

o change_attribute_value(update: Update, context): this function handles various

attribute changes based on user input. It retrieves the user's input text and

converts it to lowercase then checks the value against a series of if-elif

conditions to determine which attribute the user wants to change and performs

the corresponding action. For each valid input value, it prints a debug message,

sends a reply confirming the attribute change, updates the corresponding

attribute in the context.user_data dictionary, and ends the conversation handler

(ConversationHandler.END).

Hence, this command enables users to adjust their preferences by initiating profile

modification. Through a guided process, users can select and modify specific

parameters, culminating in a confirmation message to confirm the changes.

Figure 29; Profile modification process

51

2. The User Profiling process has been simplified by reducing the initial set of questions

from 22 to around 10, focusing on gathering essential information for

recommendations while minimizing user inconvenience. Default values are assigned

to parameters not set by the user, typically set to their mean value. Users are informed

of this defaulting practice and are given the option to modify all profile values using

the /modify command. This streamlined approach ensures efficient data collection and

user control over their profile settings.

3. In addition, a new approach has been implemented for the foodGoals explanation

type, particularly focusing on the computation of daily caloric intake. In the previous

version, the calculation was based on the assumption that a single meal constitutes

about 40% of the daily caloric intake, which seemed somewhat inaccurate.

To address this, the function has been completely reworked to calculate daily caloric

intake based on gender, goals (such as losing, gaining, or maintaining weight), and

Figure 30: Streamlined profile creation process

52

activity level. This refined approach is applied in both single explanations and

comparisons, ensuring accuracy and relevance in nutritional recommendations.

Specifically: The function now assesses a recipe's suitability for a user based on their

nutritional goals and activity levels. It calculates the daily calorie intake based on the

user's sex, goal (lose, gain, maintain weight), and activity level (low, normal, high).

The function provides positive language and commitment in acknowledging the user's

actions towards their goals. It includes social proof by mentioning that many users

with similar goals and activity levels have enjoyed the recipe.

Figure 31: Example of new foodGoals

4. Furthermore, to improve user safety and sensitivity, the dopamine-based explanation

and comparison type has been removed. This kind of explanations focused on the

dopamine production based on the consumption of certain foods, but the decision was

made after discussions with Professor Musto, the thesis supervisor, considering the

potential risks involved, especially for users affected by depression or related

conditions.

5. Instead, a novel method called foodMacros has been introduced to enhance

explanation and comparison processes. This approach focuses specifically on the

macronutrients found in recipes, namely carbohydrates, fats, and proteins, and it

establishes an ideal ratio derived from relevant nutritional research. By meticulously

analyzing deviations from this ideal distribution, foodMacros provides personalized

recommendations based on nutritional values. This ensures a more tailored and

effective approach in guiding users towards healthier eating habits. Specifically, the

foodMacros method initiates with a conversion to decimals using the formula

53

ideal_macros["carbs|fat|proteins"] / 100. This step simplifies subsequent calculations

and comparisons. The term "total_recipe_macros" denotes the sum of actual values of

carbohydrates, fats, and proteins present in the recipe. Subsequently, the expected

nutrient content is defined through the formula total_recipe_macros *

(ideal_macros["carbs|fat|proteins"] / 100). By multiplying the total recipe macros by

the ideal distribution percentage, this formula computes the hypothetical nutrient

content that would be present if the recipe precisely matched the ideal distribution.

Moving forward, the method defines deviation formulas as follows:

recipe_macros["carbs|fat|proteins"] -

(total_recipe_macros * (ideal_macros["carbs|fat|proteins"] / 100)).

These formulas calculate the deviation, which represents the disparity between the

actual amount of carbohydrates, fats, or proteins in the recipe and the expected

amount based on the ideal distribution. The deviation formula subtracts the expected

nutrient amount from the actual content in the recipe. The resulting deviation value

indicates the extent to which the actual content deviates from the expected content

under the ideal distribution. Given the practical challenge of achieving a perfect match

with the ideal ratio, a deviation range of [-4, 4] is considered healthy and appropriate,

providing users with a realistic guideline for nutritional intake.

Figure 32: Example of foodMacros

6. Finally, since there was no provision for users to express a preference for the

ingredients of the recipe to suggest. It was implemented a new feature: the User-

specific Request, in which users can ask the bot for a recommendation based on a

specific ingredient or type of dish they provide. This is implemented just through a

54

new intent that takes into account the Dialogflow entity that represents the desired

ingredient (or type of dish). The bot tries to fulfil the request by searching through the

top 15 ranked suggestions. Upon receiving the request, the bot identifies the

Dialogflow entity representing the ingredient or type of dish and transforms it into

lowercase and singular form using the library inflect27. This transformation is also

applied to the ingredients of each recipe checked along to their titles. If the bot finds a

match, either in the title or ingredients of a recipe, it will return it as a suggestion to

the user. However, if no suitable recipe is found based on the specified parameters, the

bot will inform the user accordingly.

Figure 33: User-specific request

27 https://pypi.org/project/inflect/

55

3.2.4. DialogFlow

Google Dialogflow is a natural language

understanding platform that allows

developers to build conversational interfaces

such as chatbots. It utilizes machine learning

and AI techniques to understand and process user

input in natural language, enabling human-like interactions between users and applications.

In our endeavour, DialogFlow has been used for:

1. Intent Recognition:

Dialogflow can recognize user intents based on input text or voice, allowing

developers to define how the system should respond to different user requests. The

new DialogFlow agent not only maintains basic chitchat capabilities and welcoming

features but also introduces a more organized structure by categorizing intents into

five specific areas. These areas include:

o Introduction:

Provides general information about the bot and directs users to commands like

/create for profile creation or /modify for profile modification.

o Suggestion:

Initializes the recommendation process after the user creates a profile, sending

parameters to the recommendation system to generate recipe suggestions.

o Change Suggestion:

Allows users to request a change in the recommended recipe, providing an

alternative if the first suggestion is not suitable.

o Explanation:

Enables users to inquire about the reasons behind a recommendation,

nutritional values, cooking difficulty, and other intrinsic characteristics of the

suggested recipe.

o Comparison:

Provides users with the option to compare two different recipes based on

various criteria, helping them make informed decisions about their choices.

 Figure 34: Dialogflow logo

56

2. Entity Recognition:

Entity recognition plays a crucial role in enhancing the functionality of the bot,

particularly in understanding and responding to user-specific requests.

One key aspect of entity recognition is its ability to identify and extract various types

of entities from user input. In the context of the bot's functionality related to user-

specific requests for ingredient-based recipes, entity recognition becomes especially

important. The bot utilizes entity recognition to identify and extract the specific

ingredients mentioned by the user in their request.

3. Context Management:

Dialogflow maintains context during conversations, enabling more contextually

relevant responses and better handling of follow-up questions.

To be able to use Dialogflow, Google Cloud is fundamental.

Google Cloud is a suite of cloud computing services provided by Google, offering a wide

range of solutions for building, deploying, and managing applications and data in the cloud.

It provides infrastructure as a service (IaaS), platform as a service (PaaS), and software as a

service (SaaS) offerings, enabling businesses and developers to leverage scalable and flexible

cloud resources.

In our case, through Google Cloud, we created a service account to generate credentials

specifically for the Python connection between Dialogflow and the bot. To maintain

confidentiality and privacy, new credentials were implemented and carefully managed. They

were added to the .gitignore file, which prevents them from being tracked and uploaded to

version control systems. This steps ensure secure and authenticated access, allowing the bot

to interact with Dialogflow's APIs and services effectively.

3.2.5. Explanations & Comparisons

In discussing explanations and comparisons, it's essential to first understand the intent

recognizer of Dialogflow. The intent recognizer, powered by machine learning models and a

57

list of training phrases, plays a crucial role in interpreting user intents specifically designed

for the project. When a user sends a request to the chatbot, Dialogflow's Intent Recognizer

analyzes the text and matches it with the existing intent's training phrases. Once the

corresponding intent is identified, the system proceeds to the next module to process the

request and provide a suitable response.

Responses can be directly generated by the Dialogflow platform using the dedicated

Responses module. Developers can create a list of responses within the specific Intent

section. Alternatively, as in this project's case, the correct intent is identified to respond to the

user by forwarding the request to an external server. The request is then processed, the result

is structured into natural language, and finally sent to the user in text format.

This workflow showcases the seamless integration of intent recognition and response

generation in Dialogflow. By leveraging machine learning algorithms and a well-defined

training dataset, the platform efficiently handles user queries, ensuring accurate interpretation

of intents and timely delivery of relevant responses. This approach not only enhances user

experience by providing personalized interactions but also offers flexibility for developers to

customize responses based on specific project requirements.

Every explanation and comparison is associated to a specific intent.In this way it is possible

to accurately identify what the users are asking for and provide it to them. In particular we

have:

Intent Description Triggering messages

Introduction Provides some general information about

the bot.

hi, hello, who are you, what do you do, etc.

Suggestion Initialize the suggestion process,

providing the user with a suitable recipe

Suggest something to eat

Change suggestion It can be called whenever the user does

not find suitable the first suggestion (up

to two times)

give me another one, I don't like this, do you

have another one?, can you change it?

Stop suggestion Ends the change suggestion process *automatically triggered*

Specific suggestion Provides the users with a recipe with an

ingredient they request

I want a *ingredient*-based recipe,

Can you give me a recipe with *ingredient*?

Expl age Explanation about the healthiness and is it adequate for my age?

58

appropriateness of the recipe based on the

age group the user belongs to

Expl cost Explanation about the appropriateness of

the recipe based on its cost

how much does it cost?

Expl goal Explanation about the healthiness and

appropriateness of the recipe based on the

user goals

is it in line with my goals?

Expl health-benefits Explanation concerning the possible

benefits of the recipe

does it have some healthy benefits?

Expl health-risks Explanation concerning the possible risks

of the recipe

what are its health risks?

Expl lifestyle Explanation about the appropriateness of

the recipe with respect to the user’s

lifestyle

is it good for my lifestyle?

Expl macros Explanation about the healthiness of the

recipe with respect to an ideal macros

distribution

are its macros good?

Expl popularity Explanation about the popularity of the

recipe with respect to the ratings on

giallozafferano.it

how popular is it?

Expl restriction Explanation about the appropriateness of

the recipe with respect to the user’s

restrictions

is it ok for my restrictions?

Expl skill Explanation about the appropriateness of

the recipe with respect to the user’s

cooking skills

is it easy to cook?

Expl seasonality Explanation about the level of seasonality

of the recipe ingredients

is it seasonal?

Expl sustainability Explanation about the level of

sustainability of the recipe ingredients

is it sustainable?

Expl time Explanation about the appropriateness of

the recipe with respect to the user

available time

do I have enough time?

Expl meal Plain description of the recipe what are its characteristics?

Expl meal check Provides a comparison between various

nutrients and 40% of their respective

what are it nutritional values?

59

daily reference intake

Comp age Comparison between two recipes taking

into account the users’ age

compare them according to my age

Comp cost Comparison between two recipes taking

into account the users’ cost restriction

compare them according to their costs

Comp goal Comparison between two recipes taking

into account the users’ goals

compare them according to my goals

Comp health-benefits Comparison between two recipes taking

into account the health-benefits of the

recipes

compare them according to their health

benefits

Comp health-risks Comparison between two recipes taking

into account the health-risks of the recipes

compare them according to their health risks

Comp lifestyle Comparison between two recipes taking

into account the users’ lifestyle

compare them according to my lifestyle

Comp macros Comparison between two recipes taking

into account the macros distributions of

the two recipes

compare them according to their macros

Comp popularity Comparison between two recipes taking

into account the recipes’ ratings

compare them according to their

popularity\rating

Comp restriction Comparison between two recipes taking

into account the users’ restriction

compare them according to my restrictions

Comp skill Comparison between two recipes taking

into account the users’ cooking skill

compare them according to the skill required

to cook them

Comp seasonality Comparison between two recipes taking

into account the seasonality of the

recipes’ ingredients

compare them according to their seasonality

Comp sustainability Comparison between two recipes taking

into account the sustainability of the

recipes’ ingredients

compare them according to their

sustainability

Comp time Comparison between two recipes taking

into account the users’ time restrictions

compare them according to cooking time

Comp meal Plain descriptions of the two recipes compare them according to their nutritional

values

Compl meal check Comparison between recipes taking into

account various nutrients and 40% of

their respective daily reference intake

compare them according to their nutritional

values

60

Figure 35: Intent-function list

61

3.2.6. Usage examples

62

63

4. Experimental Evaluation

The experiment for this thesis is structured with the same framework as the bot, but a

simplified version is implemented. Most intents have been removed, leaving only the default

fallback and welcome intents along with the introduction.

Additionally, a new commandHandler "/get_suggestions" has been added, which will initiate

the actual experiment process.

Our research question is: “Can we influence our users' perception of recipes to encourage

healthier eating habits by providing them with more information about the recommended

recipes?”

To find an answer to this question, the user will follow the following process during the

experiment:

1. To access the bot, users can click on the following link: https://t.me/food_recsys_bot.

This will take them directly to the bot on Telegram, where they will receive a

welcome message.

2. After entering the bot, users can create their user profile using the command /create. A

brief questionnaire consisting of 10 mandatory questions will guide them in providing

their basic information.

If users wish to make changes to their profile, they can use the command /modify after

completing the mandatory questions. By typing the name of the attribute they wish to

modify, the bot will display the available options. Alternatively, they can type "none"

if no changes are desired.

3. Healthiness assessment: Users will receive recommendations for healthy recipes and

will be asked to express their opinion on the healthiness of each recipe. The bot will

then provide additional explanations, and users will need to reconsider their opinion

based on the information provided.

64

4. Sustainability assessment: The process focuses on the sustainability of recipes rather

than healthiness, following similar steps as described above.

5. Upon completing the recommendations process, the bot will display the user's unique

ID and provide a link to the final questionnaire. Users are encouraged to participate in

the questionnaire to share their opinions and contribute to the research.

4.1. Amazon Web Services

The experiment is currently available and hosted on an AWS

machine.

Amazon Web Services (AWS)28 is a comprehensive cloud

computing platform provided by Amazon, offering a wide

range of services that enable businesses and individuals to

build, deploy, and manage applications and infrastructure in the cloud.

In particular, AWS offers a vast array of cloud services across categories such as compute,

storage, databases, networking, machine learning, artificial intelligence, analytics, security,

and more. Some popular services include Amazon EC2 (Elastic Compute Cloud) for virtual

servers, Amazon S3 (Simple Storage Service) for object storage, Amazon RDS (Relational

Database Service) for managed databases.

Our machine on Amazon Web Services (AWS) is an Amazon EC2 instance, specifically

using the t2.micro instance type and running the Ubuntu operating system with 1GB of RAM

and 30GB of storage.

An Amazon EC2 (Elastic Compute Cloud)29 instance is a virtual server provided by AWS

that allows users to run applications and services in the cloud.

EC2 instances are highly customizable, allowing users to choose specifications such as CPU,

memory, storage, and networking capabilities based on their workload requirements.

28 https://aws.amazon.com/
29 https://aws.amazon.com/it/ec2/

Figure 36: Amazon Web Services logo

65

The t2.micro instance type is one of the many instance types available on AWS and it is

designed for general-purpose computing and is suitable for a wide range of applications,

including development and testing environments, small-scale applications, and low-traffic

websites.

4.2. The Experiment

In addition to the questions previously addressed, this experiment will also collect data on

users' levels of knowledge and interest regarding the healthiness and sustainability of the

recipes. These metrics will serve as a basis for comparison in interpreting the results. The

experiment is structured as follows:

After obtaining mandatory user information and completing profile creation, the main

experiment commences. Users will initially receive 6 suggestions, comprising a first course,

a second course, and a dessert in both the healthiness and sustainability categories.

This process was implemented through a new conversationHandler that takes care of the

entire flow, specifically:

The conversation handler defines a structured flow for a chatbot or conversational interface

related to suggesting and evaluating recipes based on their healthiness and sustainability:

 entry points: The conversation starts when the user triggers the "get_suggestions"

command, which is handled by the "healthiness_initialiation" function.

 states: Defines different states or stages of the conversation, each corresponding to a

particular point in the interaction flow. Here are the states and their corresponding

message handlers:

o PRE_FIRST_COURSE_HEALTINESS: User is expected to provide

unconditioned input for the first course's healthiness.

o POST_FIRST_COURSE_HEALTINESS: After receiving the user's input for

the first course's healthiness, the conversation moves to the explanation for the

first course and now expects a conditioned input from the user.

66

o PRE_SECOND_COURSE_HEALTINESS: User provides unconditioned input

for the second course's healthiness.

o POST_SECOND_COURSE_HEALTINESS: After receiving the user's input

for the second course's healthiness, the conversation moves to the explanation

for the second course and now expects a conditioned input from the user.

o PRE_DESSERT_HEALTINESS: User provides unconditioned input for the

dessert's healthiness.

o POST_DESSERT_HEALTINESS: After receiving the dessert's healthiness

input the conversation moves to the explanation for the second course and now

expects a conditioned input from the user.

o PRE_FIRST_COURSE_SUSTAINABILITY: User provides unconditioned

input for the first course's sustainability.

o POST_FIRST_COURSE_SUSTAINABILITY: After the first course's

sustainability input, the conversation moves to the explanation for the first

course and now expects a conditioned input from the user.

o PRE_SECOND_COURSE_SUSTAINABILITY: User provides unconditioned

input for the second course's sustainability.

o POST_SECOND_COURSE_SUSTAINABILITY: After the second course's

sustainability input, the conversation moves to the explanation for the first

course and now expects a conditioned input from the user.

o PRE_DESSERT_SUSTAINABILITY: User provides unconditioned input for

the dessert's sustainability.

o POST_DESSERT_SUSTAINABILITY: After receiving the dessert's

sustainability input, the conversation reaches the end of the experiment.

 fallbacks: In case a user input doesn't match any of the expected states or handlers the

users will be prompted with an error message.

Hence, upon receiving each suggestion, users are prompted to rate its

healthiness/sustainability on a scale from very unhealthy/unsustainable to very

healthy/sustainable. Subsequently, users are presented with an explanation elaborating on the

recipe, providing additional information.

67

After reviewing the explanation, users are asked to rate the recipe again, taking into account

the new information. This process is repeated for all 6 suggestions (3 assessing healthiness, 3

sustainability).

Regarding healthiness, the bot will randomly provide one of 3 types of explanations:

 Expl Macros,

 Expl Goals,

 Expl Meal Check.

In the sustainability section, the bot will either present Expl Sustainability or a new

explanation listing only the recipe ingredients.

Figure 37: ConversationalHandler for the experiment

The objective is to evaluate whether the bot's explanations influence users' perceptions of the

recipes. All user input and selections are recorded in a CSV file for later analysis.

Upon completion of the process, users receive their unique Telegram ID and a link to a

Google Form hosting the final questionnaire, structured as follows30:

Question construct answers

1. Please choose your education

level:

Demographic Primary School

 High School

 Bachelor's degree

 Master's degree

30 Roberto Polillo «Facile da usare, una moderna introduzione all’ingegneria dell’usabilità», 2010.

68

 Ph.D. or more

2. How would you rate yourself

as a computer user?

Demographic No experience

 Beginner

 Average

 Advanced

3. Have you ever used a

recommender system before?

Demographic Yes

 No

 Maybe

4. How frequently have you used

conversational agents and digital

assistants?

Demographic Never

 Very infrequently (a few times

overall)

 Infrequently (a few times a

month)

 Moderately (1-3 times a week)

 Regularly (Daily)

5. The items recommended to

me match my interests:

Recommendation

accuracy

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly Agree

6. This recommender system

helped me discover new

products:

Novelty Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly Agree

7. This recommender system

provided me with unexpected

but useful suggestions:

Serendipity Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly Agree

8. The information provided for

the recommended items is

sufficient for me to make a

decision:

Interface

sufficiency

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly Agree

10. The recommender can be

trusted

Trust and

reliability

 Strongly disagree

 Disagree

 Neutral

69

 Agree

 Strongly Agree

11. Overall, I am satisfied with

the recommender:

Overall

satisfaction

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly Agree

12. After reading the

explanations about the

healthiness and sustainability of

the recipe, I am more informed

about these aspects:

Information

Clarity and

Effectiveness

 Strongly disagree

 Disagree

 Neutral

 Agree

 Strongly Agree

13. Do you think the

explanations provided by the

system were clear and

understandable regarding the

healthiness and sustainability of

the recipe?

Explanation

Clarity

 Yes, very clear and

understandable

 Yes, moderately clear and

understandable

 Neutral

 No, not very clear and

understandable

 No, not clear and understandable

at all

14. After receiving the

explanations, would you change

your eating or consumption

habits to promote healthiness

and sustainability?

Behavioural

Intentions

 Yes, I would certainly give it a

try

 I am open to making changes

following the explanations

 I am not sure

 I might not make any changes

 No, I don't think so

15. After receiving the

explanations, do you believe that

the recipes recommended by the

system have a different

healthiness and sustainability

value than you initially thought?

Perceived Impact

of Information

 Yes, I am convinced

 I think there might be some

differences

 I don't know

 I am not convinced by the

differences

 No, my opinion remains the same

70

5. Results

In this paragraph, all the data collected during the experimentation phase will be analyzed,

particularly the responses provided by users in the final questionnaire and other relevant data

derived from the actual usage of the bot. The final questionnaire was designed to assess users'

experiences in interacting with the bot, encompassing aspects such as ease of use, overall

satisfaction, but more importantly explanation clarity and perceived impact of information.

Hence, in addition to the quantitative and demographic responses gathered through the

questionnaire, qualitative feedback provided by users has also been examined to gain a

deeper understanding of their experiences and perceptions.

Furthermore, bot usage data, including the users’ profiles and opinions, have been considered

to evaluate the effectiveness and efficiency of the implemented system.

5.1 Questionnaire

The questionnaire was submitted to 32 users and the initial questions provide insight into

their demographics.

71

It's notable that while our users demonstrate proficiency in computer usage, only about half

of them can accurately recognize a recommender system. This observation is intriguing given

the widespread utilization of recommender systems like those found in Amazon or Netflix; a

significant portion of users seem unaware of their presence.

72

Further examination reveals a diverse user base, encompassing individuals who are already

familiar with conversational agents as well as those who have never interacted with them.

Additionally, we observe a strong alignment between the recommendations and the users'

interests.

73

Moreover, the recommender system appears to facilitate users in discovering new products:

Similar percentages are evident when considering serendipitous discoveries.

74

We now begin to discern the impact of explanations on our users:

We have also gained a good level of trust:

75

In facts we see that the recommender pleased the vast majority of them with over 90% of the

users that are satisfied with the recommender.

Let’s now focus on the most interesting questions for this experiment.

In particular, we can observe how the explanations about the healthiness and sustainability

provided some new information to the users, making them more informed. Only a very small

portion of the users (less than 10%) disagree with the statement, but we have to keep in mind

that there are people that are also well informed about such aspects of recipes.

76

The bot also appears to deliver clear and understandable explanations, as evidenced here,

almost 90% of the user agreed:

Most importantly, however, we can also see how the bot’s explanations can not only change

the perception of the users regarding a given recipe but also influence their behaviours:

77

The significance of the final question cannot be overstated, as it serves as a pivotal point

where users may question their existing knowledge and be prompted to construct a new

understanding. Remarkably, over 90% of users responded affirmatively, indicating their

acknowledgment of the disparities between their initial perceptions of healthiness and

sustainability versus the insights gained through the bot's explanations.

5.2. Experimental Data

In our comprehensive dataset sourced from giallozafferano.it, we've meticulously collected

details on 4615 recipes, covering a wide array of attributes for each entry, including URL,

title, cost, category, imageURL, description, prepTime, cookTime, totalTime, yield, dietary

specifications (such as vegetarian, lactose-free, gluten-free), nutritional information (such as

calories, carbohydrates, sugars, proteins, fats, saturated fats, fibers, cholesterol, sodium),

ingredient measurements, actual ingredients, cooking instructions, and even ratings.

To establish a reliable benchmark (the so-called Ground Truth) for comparing user responses,

we've devised a system to evaluate both the healthiness and sustainability of each

78

recommended recipe. Beginning with healthiness, we adhere to the Food Standards Agency

(FSA)31 Guidelines, specifically:

We start by taking the URL of a specific recipe as input, which serves as a reference point.

Utilizing this URL, we filter our recipe DataFrame to extract essential nutrient values such as

fat, saturated fat, sugars, and sodium from the corresponding row, storing them in a

dictionary for streamlined computation. To conform to FSA standards, we normalize these

nutrient values by dividing each by 1.2, adjusting from the typical 100 grams to an 80%

portion size. The healthiness score, ranging from 4 to 12, is then calculated based on

predefined thresholds provided by the FSA, with increments determined by how each

nutrient value compares to these thresholds. This score enables us to categorize recipes into

five distinct healthiness levels, ranging from "Very Healthy" to "Unhealthy", offering users

clear insights into the nutritional quality of each dish.

Turning our attention to sustainability, our approach centers on evaluating recipes'

environmental impact, specifically concerning their carbon and water footprints. The process

commences by dissecting the ingredients of a given recipe and cross-referencing each

ingredient with the data-processing process sourced from the library HeASe32. Leveraging

the dataset from SU-EATABLE LIFE33, we obtain information regarding the environmental

implications of various ingredients. Through this dataset, we discern the carbon and water

footprints associated with each ingredient. Subsequently, we compute the sustainability score

utilizing HeASe's established methodology, incorporating a logarithmic normalization step to

ensure consistency and reliability across diverse recipes. By computing scores for all recipes,

spanning from 0 to 12, and distributing them across percentiles, we assign five labels

denoting sustainability levels, ranging from "Very Sustainable" to "Unsustainable".

Collecting user profiles, responses, and opinions, along with generating our Ground Truth,

provides us with valuable insights into the usage of the bot:

31 https://www.food.gov.uk/
32 https://github.com/GiovTemp/SustainaMeal_Case_Study/tree/main
33 Petersson, Tashina; Secondi, Luca; Magnani, Andrea; Antonelli, Marta; Dembska, Katarzyna; Valentini,
Riccardo; et al. (2021). SU-EATABLE LIFE: a comprehensive database of carbon and water footprints of food
commodities. figshare. Dataset. https://doi.org/10.6084/m9.figshare.13271111.v2

79

As we can see from the tables below, we can observe that the explanation of 'health-benefits'

enhances the perception of healthiness across all types of dishes, while the 'goals' explanation

improves the perception of healthiness specifically for first courses.

Regarding sustainability, the proposed explanations are particularly effective in enhancing

the perception of second courses.

Average error PRE explanation = |PRE_opinion_value – Ground_Truth_value| / count

Average error POST explanation = |POST_opinion_value – Ground_Truth_value| / count

Overall per dish, regardless of type of explanation:

Topic Dish Average error PRE

explanation

Average error POST

explanation

Healthiness First course 0.029 0.118

Healthiness Second course 0.353 0.588

Healthiness Dessert 1.000 1.382

Sustainability First course 1.059 1.206

Sustainability Second course 0.941 0.706

Sustainability Dessert 1.971 2.059

Overall per explanation, regardless of dish:

Topic Type of explanation Average error

PRE explanation

Average error

POST explanation

Healthiness Goal 0.222 0,444

Healthiness Health-benefit 0,521 0,478

Healthiness Health-risk 0,458 0,875

Healthiness Macros 0,409 0,863

Sustainability Ingredients 1,098 1,235

Sustainability Sustainability 1,500 1,461

80

Now we combine Dishes and Explanations:

Topic Dish - Explanation Average error

PRE explanation

Average error

POST explanation

Healthiness First course - Goal 0,083 0

Healthiness First course - H-benefit 0,222 0,222

Healthiness First course - H-risk 0 0,714

Healthiness First course - Macros 0,285 0,428

Healthiness Second course - Goal 0,076 0,307

Healthiness Second course - H-benefit 0,666 0,500

Healthiness Second course - H-risk 0,545 0,545

Healthiness Second course - Macros 1,500 2,166

Healthiness Dessert - Goal 0,800 1,200

Healthiness Dessert - H-benefit 1,500 1,300

Healthiness Dessert - H-risk 0,857 1,428

Healthiness Dessert - Macros 0,555 1,333

Sustainability First course - Ingredients 1,266 1,400

Sustainability First course - Sustainability 1.000 1,176

Sustainability Second course - Ingredients 0,875 0,750

Sustainability Second course - Sustainability 1,041 0,750

Sustainability Dessert - Ingredients 1,823 1,882

Sustainability Dessert - Sustainability 2,117 2,235

81

Hence, we actually gained a decrement in the average errors of:

Topic Dish Decrement % on

Average error PRE/POST explanation

Sustainability Second Course -25.00 %

Topic Type of explanation Decrement % on

Average error PRE/POST explanation

Healthiness Health-benefit -8.24 %

Sustainability Sustainability -2.60 %

Topic Dish - Explanation Decrement % on

Average error PRE/POST explanation

Healthiness First course - Goal -8.30 %

Healthiness Second course - H-benefit -24.92 %

Healthiness Dessert - H-benefit -13.33 %

Sustainability Second course - Ingredients -14.29 %

Sustainability Second course - Sustainability -28.00 %

82

6. Conclusions

The conclusions drawn from this study reveal promising implications for promoting healthier

dietary choices among users. The research embarked on exploring the effectiveness of the

chatbot in influencing user behaviour towards embracing healthier eating habits in an

environment inundated with dietary choices. Specifically, it started from the research

question: “Can we influence our users' perception of recipes to encourage healthier eating

habits by providing them with more information about the recommended recipes?”. The

study demonstrates that it is possible to change user perception and also behaviours if they’re

prompted with the right information. First and foremost, the study underscores the positive

reception of the recommender system within the chatbot interface. Despite a heterogeneous

user group comprising individuals with varying levels of familiarity with conversational

agents, the overwhelming majority expressed satisfaction with the recommendations

provided. This high level of user satisfaction, exceeding 90%, suggests that the chatbot

effectively caters to the diverse needs and preferences of its users, regardless of their prior

experience with similar technologies. Such a favourable response underscores the potential

of integrating technology-driven solutions, such as chatbots, in promoting healthy dietary

choices.

Furthermore, the study sheds light on the transformative potential of the chatbot's

explanations in enhancing user knowledge and awareness regarding the healthiness and

sustainability of food choices. By providing clear and understandable explanations, the

chatbot serves as an informative resource, enriching users' understanding of nutritional

concepts and guiding them towards informed decision-making. The significant proportion of

users who acknowledged the value of these explanations, coupled with the minimal dissent,

underscores the efficacy of the chatbot in imparting new information and fostering a deeper

appreciation for healthy eating principles.

Most notably, the study highlights the pivotal role of the chatbot's explanations in influencing

user perceptions and behaviours towards food consumption. The bot's explanations not only

challenge users' preconceived notions but also prompt them to reconsider their dietary

choices and habits. The overwhelmingly affirmative response from users, also here exceeding

90%, indicates a paradigm shift in their understanding of healthiness and sustainability,

83

guided by the insights gleaned from the chatbot's explanations. This suggests that the chatbot

can serve as a catalyst for behaviour change, empowering users to make more conscious and

informed decisions about their food intake.

Ultimately, the tables displaying the average errors with respect to the ground truth reveal

notable enhancements across multiple instances, attributable to the explanatory capabilities

of the bot.

In conclusion, the study underscores the potential of integrating a healthy food recommender

system within a chatbot interface as a persuasive tool for promoting healthier dietary choices.

The high level of user satisfaction, coupled with the transformative impact of the chatbot's

explanations on knowledge, perceptions, and behaviours, signifies its effectiveness in

fostering positive dietary changes among users.

84

Future Works

Future works in the context of this study could focus on:

 integrating wearable technology;

 leveraging behavioural nudges and gamification strategies ;

 enhancing multimodal communication within chatbot interfaces

Integration with wearable devices offers the potential for real-time monitoring of users'

dietary behaviors and physical activity levels, enabling personalized feedback and support

throughout the day. By analyzing data from activity trackers and biometric sensors, the bot

could deliver timely reminders, goal-setting prompts, and rewards tailored to individual

users' needs and preferences.

Furthermore, incorporating behavioural nudges and gamification elements, such as goal-

setting, progress tracking, and rewards systems, can incentivize and motivate users to adhere

to healthier eating habits. By transforming dietary goals into achievable milestones and

turning healthy eating into an engaging and rewarding experience, the bot can foster

sustained behaviour change over time.

Additionally, introducing multimodal communication modalities, such as voice interaction,

visual cues, and interactive media, can improve user engagement and comprehension of

dietary recommendations. Multimodal communication can enhance the effectiveness and

accessibility of chatbot interventions for promoting healthier dietary choices among users.

Integrating these approaches could change how individuals make informed and sustainable

dietary decision.

85

7. Bibliography

1. https://www.statista.com/chart/17518/data-created-in-an-internet-minute/

2. https://telegram.org/

3. https://www.apple.com/siri/

4. https://www.alexa.com/

5. https://assistant.google.com/

6. V. Kumar, A. Dixit, R. R. G. Javalgi e M. Dass, «Research framework, strategies, and

applications of intelligent agent technologies (IATs) in marketing,» Journal of the

Academy of Marketing Science, vol. 44, n. 1, pp. 24-45, 2016.

7. David L.Poole, Alan K. Mackworth «Artificial Intelligence: Foundations of

Computational Agents».

8. https://www.deepmind.com/research/highlighted-research/alphago/

9. https://www.tensorflow.org/about

10. https://www.ibm.com/watson

11. Zhou, H., Zhou, X., Zeng, Z., Zhang, L., & Shen, Z. (2023, February 9). A

Comprehensive Survey on Multimodal Recommender Systems: Taxonomy, Evaluation,

and Future Directions.

12. Joseph Weizenbaum. Eliza—a computer program for the study of natural language

communication between man and machine. Communications of the ACM, 9(1): 36–45,

1966.

13. Jannach, Dietmar, et al. "A survey on conversational recommender systems." ACM

Computing Surveys (CSUR) 54.5 (2021): 1-36.

14. Michael Jugovac and Dietmar Jannach. Interacting with recommenders – overview and

research directions. TiiS, 7(3):10:1–10:46, 2017. doi: 10.1145/3001837. URL

https://doi.org/10.1145/3001837.

15. Lops Pasquale, Musto Cataldo, Narducci Fedelucio, Semeraro Giovanni, "Semantics in

Adaptive and Personalised Systems", Springer.

16. https://www.python.org/

17. https://cloud.google.com/dialogflow

86

18. https://www.yummly.com/

19. https://allrecipes.com

20. https://www.mealime.com/

21. Rostami, M., Farrahi, V., Ahmadian, S., Jalali, S. M. J., Oussalah, M. (2023). A novel

healthy and time-aware food recommender system using attributed community detection.

Expert Systems with Applications, 221, 119719.

https://doi.org/10.1016/j.eswa.2023.119719

22. https://www.giallozafferano.it/

23. I. Paparella, «Progettazione e Implementazione di un Food Recommender System Basato

su Holistic User Model» 2020.

24. Lopedota, F. (2022/2023) "FoodRecSysBot": Progettazione e sviluppo di un Agente

conversazionale per il supporto personalizzato nella scelta di cibo e ricette.

25. Amir Shevat «Designing Chatbots: Creating Conversational Experiences».

26. https://pypi.org/project/python-telegram-bot/20.7/

27. https://pypi.org/project/inflect/

28. Roberto Polillo «Facile da usare, una moderna introduzione all’ingegneria dell’usabilità»,

2010.

29. https://aws.amazon.com/

30. https://aws.amazon.com/ec2/

31. https://www.food.gov.uk/

32. https://github.com/GiovTemp/SustainaMeal_Case_Study/tree/main

33. Petersson, Tashina; Secondi, Luca; Magnani, Andrea; Antonelli, Marta; Dembska,

Katarzyna; Valentini, Riccardo; et al. (2021). SU-EATABLE LIFE: a comprehensive

database of carbon and water footprints of food commodities. figshare. Dataset.

https://doi.org/10.6084/m9.figshare.13271111.v2

87

8. Acknowledgements

I would like to express my gratitude to all who have contributed in any way to the

completion of this work, but in particular:

I am deeply grateful to my thesis supervisor, Professor Cataldo Musto, for his exceptional

guidance, insightful advice, and unwavering support throughout every phase of my thesis.

His expertise and encouragement have been instrumental in shaping the quality and direction

of this work.

To my parents, I want to express my deep appreciation for making this second degree

possible for me.

A special thanks goes to my partner, Sara, who has always been by my side with love and

understanding. Her presence and support have made every challenge more manageable and

every success more meaningful.

And finally I would like to extend my thanks to my colleagues, Francesco and Donato who

have lightened the university environment and without whom I would still have many exams

ahead in our degree course.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

